COVID 19 Update June 24,2020

Jorge Mera, MD Whitney Essex, APRN

Transmission Routes:

- Person-to-person through respiratory droplets in air or on deposited on surfaces, and possibly by the fecal-oral route
- Vertical transmission cannot be ruled out
 - No live virus had been detected in breast milk and the known benefits of breast milk outweigh any theoretical risks.
- Shedding in stool was detected in up to 41% of infected
- **Detectable in semen** from men who were acutely ill or in recovery
 - Viability not assessed and no reported cases of sexual transmission to date.
- Has been detected in cats, their relevance as a reservoir is uncertain

Viability: remain viable and infectious in

- Aerosols for hours (median half-life 1.1 hours)
- Surfaces up to days.
 - 5.6 hours on stainless steel, 6.8 hours on plastic and cardboard up to 24 hours

Transmission

Incubation period:

- •Median incubation period to be 5.1 -5.2 days
- •97.5% of those who develop symptoms will do so within 11.5 days (CI, 8.2 to 15.6 days)
- •14 day period for monitoring after potential exposure is generally recommended

Asymptomatic transmission

- •40-45% of those infected remain asymptomatic
- •Asymptomatic persons can transmit SARS-CoV-2 longer than 14 days.
- •Transmission may occur during the incubation period, and viral shedding has been calculated to peak on or before symptom onset
- •Calculated infectiousness begins 2.3 days before symptom onset and peaks 0.7 days before symptoms begin, with pre-symptomatic transmission accounting for 44% of secondary cases.
- •An attack rate of 0.7% for exclusive pre-symptomatic exposures has been documented

The Reproductive Number (R₀) is the number of cases, on average, an infected person will cause during their infectious period to individuals who do not have immunity.

•The WHO $\rm R_0$ for non mitigated reproduction as between 2.0 and 2.5, double that of influenza

Transmission

Quarantine to Reduce Transmission

•The WHO determined that quarantine was important in reducing incidence and mortality during the COVID-19 pandemic

Avoidance of Close Personal Contact

•Respiratory droplets from human respiration, speech, and other routine behaviors generally fall within a couple meters of the person who generates them

•Smaller droplets produced during sneezing or coughing may project 6 to 8 meters away.

The CDC defines close contact as:

- •Being within approximately 6 feet (2 meters), or within the room or care area, of a novel coronavirus case for a prolonged period of time while not wearing recommended personal protective equipment **OR**
- •Having direct contact with infectious secretions of a novel coronavirus case (e.g., being coughed on) while not wearing recommended PPE

Clinical Risk Factors

- •As of May 30, 2020, US case surveillance data revealed the most common underlying health conditions were: **cardiovascular disease** (32%), **diabetes** (30%), and **chronic lung disease** (18%).
- •Hospitalizations were six times higher and deaths 12 times higher among those with reported underlying conditions compared with those with none reported
- •Higher risk has been found associated with **blood group A** and lower risk in blood group O

Transmission

Black Race, Latino Ethnicity, increases risk for Covid-19

Duration of Viral Shedding

- The CDC reports negligible risk of recovering replication-competent virus from someone with Covid-19 illness at 10 days after onset of illness and this is based on two studies.
- Whether the severity of symptoms affects duration of viral shedding remains uncertain

Implications of positive serology, including potential for reinfection by the same or a different strain, also remain uncertain.

Re-infection Potential

• Risk for repeat SARS-CoV-2 infection, with either substantially the same or a substantially mutated virus, is unknown.

Transmission

Clinical Manifestations

Asymptomatic Infection (40-45%)

Influenza-Like Illness Symptoms (40-45%)

•Fever (87-98%) but only 30.7% of patients were febrile at triage. Cough Shortness of breath myalgias, fatigue, sore throat, and headache

• Upper respiratory symptoms and conjunctivitis

Gastrointestinal Symptoms (12%) diarrhea and nausea prior to other symptoms

Neurological symptoms (36.4%) including headache, AMS, dizziness, and seizure

•Acute cerebrovascular diseases can present as initial manifestation

Anosmia 74%-87%, dysgeusia in 56-69%, and both symptoms in 68%, both occurred on average at day 4

•But it can occur on presentation and as the sole presenting symptom.

•2/3 have objective signs of dysfunction

• Consider COVID 19 if Anosmia, hyposmia, and dysgeusia in the absence of allergic rhinitis, acute rhinosinusitis, or chronic rhinosinusitis

Pediatric Multi-System Inflammatory Syndrome Temporally Associated with SARS-CoV-2")

- •Features overlap with Kawasaki Disease.
- •Bilateral bulbar conjunctival injection was the most common pediatric symptom in a French study.
- •Fever and abdominal/GI symptoms are prominent, may predate other symptoms
- •Polymorphous rash may be present, including changes to the lips and oral cavity
- Irritability and headache may be present
- Myocarditis

Clinical Manifestations

Physical Examination

- Vital signs: fever, increased respiratory rate, and reduced oxygen saturation
- Lungs: relatively benign/quiet auscultation relative to dyspnea and hypoxia

Laboratory Findings

• Lymphopenia (90%) of patients in a series of persons hospitalized with Covid-19, Thrombocytopenia[,] LFT elevations[,] CRP elevation, hypo-allbuminemia, LDH elevation D-dimer elevation, Ferritin elevation

Prognostic Laboratory Testing associated with mortality:

• D-dimer: A level >1 µg/mL or > 2.0 µg/mL, Absolute Neutrophil to lymphocyte ratio , Troponin T and proBNP

Clinical Course

- The acute respiratory disease of Covid-19 may progress to bilateral **pneumonia**, acute respiratory distress syndrome (**ARDS**), or death.
- Diffuse alveolar damage has been identified on postmortem histopathology
- 14-33% of hospitalized patients requiring intensive care with a high mortality for those requiring critical care
- In New York Overall (n=2634)
 - 14.2% were treated in the intensive care unit
 - 12.2% received invasive mechanical ventilation
 - 3.2% were treated with kidney replacement therapy
 - Mortality was 88% for those requiring mechanical ventilation

Pathology

- Lung Injury
 - Extensive alveolar damage as well as microthrombi in pulmonary vasculature. Histology of lung found severe endothelial injury associated with intracellular virus, widespread microangiopathy and alveolar capillary microthrombi, and vascular angiogenesis
 - Inflammation may lead to permanent lung damage. Damage may be severe enough to necessitate consideration for lung transplantation

Thrombosis, Thromboembolism, and Ischemic Stroke

- Elevated d-dimer and thrombosis have been reported as part of the acute illness spectrum of Covid-19
- Case reports demonstrate development of antiphospholipid antibodies as well as prolonged aPTT
- Multiple studies, including autopsy series have confirmed the high prevalence of venous and arterial thrombosis and thromboembolism in Covid-19 with Vein thrombosis rates from 27% to 79%
- CNS
 - No signs of encephalitis, only hypoxemic damage

Imaging

Routine chest radiography -

- Chest X-ray does not affect clinical outcomes in persons presenting to a hospital with lower respiratory tract infection
 - 58.3% of plain chest radiographs have been observed to be normal in COVID 19 patients
 - 24.7% of patients in a New York City case series of persons hospitalized with Covid-19 did not demonstrate infiltrates on chest radiography at the time of emergency room presentation

Chest CT

- A negative chest CT does not rule out Covid-19, and an abnormal CT is not specific
- Imaging may be of use when worsening respiratory status requires radiologic assessment
- Chest CT findings, though not specific for COVID-19, may be more sensitive for diagnosis than a nasopharyngeal RT-PCR viral test at a single point in time.
- Chest Imaging Guidance Statements
- The American College of Radiology
 - "A normal chest CT does not mean a person does not have COVID-19 infection and an abnormal CT is not specific for COVID-19 diagnosis. A normal CT should not dissuade a patient from being quarantined or provided other clinically indicated treatment when otherwise medically appropriate. Clearly, locally constrained resources may be a factor in such decision making."
- A multinational consensus statement also recognized the role of chest imaging in situations where diagnostic testing is constrained, stating that
 - "In a resource-constrained environment, imaging is indicated for medical triage of patients with suspected COVID-19 who present with moderate-severe clinical features and a high pre-test probability of disease."

Chest Imaging Infection Control Guidance

- It is important to note that chest imaging challenges infection control protocols, uses PPE, and causes disinfection down time for imaging machines
- The ACR therefore advises used of portable radiography units if possible when chest imaging is considered medically necessary; surfaces of these machines can be more easily cleaned.

Recommendations for use of fixed equipment

- Use fixed radiology equipment only if necessary for patient care; use portable imaging if available and appropriate.
- Staff must wear PPE if coming into patient contact.
- Patients should wear surgical masks.
- Cover patient mattresses with sheets (reusable).
- Ventilate the imaging room, waiting time verified for air exchange between patients.
- Remove all accessories and devices from the exam room
- If possible, group cases of COVID-19 patients at the end of the day.
- Clean every surface of the CT scanner or fixed radiology equipment between patients with the manufacturer-specified cleaning protocol; ensure all surfaces remain wet for the contact time specified on the