

Creating Hepatitis C Care Cascades from Laboratory and Electronic Health Record Data

Indian Country Hepatitis C Elimination ECHO

June 8, 2021

Division of Viral Hepatitis Centers for Disease Control and Prevention

Disclaimer/Disclosures

This presentation does not necessarily reflect the official policies of the Centers for Disease Control and Prevention.

- Nathan Furukawa: Nothing to Disclose
- Liesl Hagan: Nothing to Disclose
- Martha Montgomery: Nothing to Disclose
- Priti Patel: Nothing to Disclose

Division of Viral Hepatitis: Strategy and Implementation Unit

Mission:

- Develop public health policies, partnerships, and initiatives to improve access to viral hepatitis prevention and treatment with a focus on populations with disproportionate burden of disease.
- Improve the awareness and implementation of CDC recommendations on hepatitis C elimination

Disproportionately Affected Populations:

- People who inject drugs
- People in correctional settings
- American Indian/Alaska Native people

Activities Include:

- National Harm Reduction Technical Assistance Center
- Developing HCV elimination strategic planning guidance for state health departments
- Developing DVH's perinatal HCV prevention strategy
- Supporting hepatitis C elimination projects among Alaskan Native tribes

Nathan Furukawa: <u>nmt6@cdc.gov</u> Priti Patel: <u>pgp0@cdc.gov</u>

Overview

Laboratory-based Hepatitis C Virus Clearance Cascade

Martha Montgomery

Creating a Standardized EHR-based Care Cascade for Hepatitis C

- Liesl Hagan
- Discussion and Q/A

National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention

Laboratory-based Hepatitis C Virus Clearance Cascade

Guidance for State and Local Health Departments

A work in progress

Martha Montgomery, MD, MHS

Purpose

- Create a standardized hepatitis C virus clearance cascade based on laboratory reporting
- Provide jurisdictions with a tool to assist in hepatitis C elimination by
 - Identifying data-to-care opportunities
 - Measuring impact of public health interventions
 - Evaluating health disparities within subpopulations

Development Process

Research Full Report

SDC

Development and Validation of Surveillance-Based Algorithms to Estimate Hepatitis C Treatment and Cure in New York City

Miranda S. Moore, MPH; Angelica Bocour, MPH; Lizeyka Jordan, MPH; Emily McGibbon, MPH; Jay K. Varma, MD; Ann Winters, MD; Fabienne Laraque, MD, MPH

The Massachusetts Hepatitis C Testing Cascade, 2014-2016

Quynh T Vo¹⁰, Shauna Onofrey, Daniel Church, Kevin Cranston, Alfred DeMaria and R Monina Klevens

Bureau of Infectious Disease and Laboratory Sciences, Massachusetts Department of Public Health, Boston, MA, USA.

Tennessee's 2017 Hepatitis C Virus Continuum of Cure

Council of State and Territorial Epidemiologists Annual Conference, 2019

Lindsey Sizemore, Viral Hepatitis Program Director

RESEARCH ARTICLE Low hepatitis C antibody screening rates among an insured population of Tennessean Baby Boomers

James G. Carlucci^{1,2}, Syeda A. Farooq¹, Lindsey Sizemore², Michael Rickles², Brandon Cosley³, Leigh McCormack³, Carolyn Wester²*

1 Vanderbilt University Medical Center, Nashville, Tennessee, United Sta

Department of Health, Nashville, Tennessee, United States of America, 3

Chattanooga, Tennessee, United States of America

Sharing the cure: Building primary care and public health infrastructure to improve the hepatitis C care continuum in Maryland

Detection of Recurrent Hepatitis C Viremia Using Surveillance Data, New York City

Kevin Guerra, MPH; Angelica Bocour, MPH; Miranda S. Moore, MPH; Ann Winters, MD

A Population-Based Intervention to Improve Care Cascades of Patients With Hepatitis C Virus Infection

John Scott,¹ Meaghan Fagalde,² Atar Baer,² Sara Glick,^{1,2} Elizabeth Barash,² Hilary Armstrong,² Kris V. Kowdley,³ Matthew R. Golden,^{1,2} Alexander J. Millman,⁴ Noele P. Nelson,⁴ Lauren Canary,⁴ Matthew Messerschmidt,⁵ Pallavi Patel,⁶ Michael Ninburg,⁷ and Jeff Duchin^{1,2}

Public health clinic-based hepatitis C testing and linkage to care in baltimore

O. Falade-Nwulia,^{1,2} S. H. Mehta,³ J. Lasola,¹ C. Latkin,³ A. Niculescu,^{1,2} C. O'Connor,³ P. Chaulk,^{2,3} K. Ghanem,¹ K. R. Page,^{1,2} M. S. Sulkowski¹ and D. L. Thomas¹ ¹ Johns Hopkins University School of Medicine, Baltimore, MD, USA; ²Baltimore City Health Department, Baltimore, MD, USA; and ³ Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

Minimum requirements

- Deduplicated hepatitis C database that houses laboratory data
- Reporting of negative (not detected) HCV RNA test results in addition to positive anti-HCV and positive (detected) HCV RNA
- Laboratory reporting should include type of test, test result, specimen collection date

Pollev.com/marthamontgo296

Lab-based Hepatitis C Virus Clearance Cascade

Hepatitis C Virus Clearance Cascade Time Frame for Evaluation Year "202X"

Flow Diagram to Visualize how Individuals are Assigned within the Hepatitis C Virus Clearance Cascade

Flow diagram continued...

Cascade Steps by Subpopulation

	Ever infected	Viral Testing	Initial Infection	Cured/Cleared	Persistent infection/Reinfection	
	Step 1	2b/1	3b/2b	4b/3b	5b/4b	
Total	Ν	N, %	N, %	N, %	N, %	
Age*						
0–19						
20–29						
30–39						
40–49						
50–59						
60+						
Birth cohort						
Before 1945						
1945–1965						
1966–1980						
After 1980						
Gender identity						
Male						
Female						
Transgender						
Non-binary						
Race and ethnicity						
American Indian or Alaska Native						
Asian						
Native Hawaiian or other Pacific Islander						
Black						
Hispanic						
White						

Pollev.com/marthamontgo296

Limitations

- Potential misclassification at every Step
- Inability to disaggregate reasons for gaps in testing (healthcare access, health insurance, transportation, etc.) or treatment (linkage to care, health insurance, provider shortages, administrative barriers, etc.)
- Changes in testing practices and treatment regimens over time (fewer tests, shorter treatment courses) could lead to fewer reported lab results

Advantages

- Simplicity
- Low resource (does not require medical chart review)
- Consistency over time and across jurisdictions

Thank you!

Martha Montgomery, LWX6@cdc.gov

Creating a Standardized EHR-based Care Cascade for Hepatitis C

CDC Division of Viral Hepatitis in partnership with the National Association of Community Health Centers (NACHC) 2016–2020

> Liesl Hagan, MPH vqf8@cdc.gov

Background

- No single data source can capture testing, care, and treatment for HCV in all populations
- CDC relies on a combination of data sources and data types to understand the lay of the land

Project Purpose

Add **Community Health Centers** to the data sources that inform our work

- Uninsured & medically underserved
- High burden of hepatitis C
- Populations with risk factors (PWID, incarcerated, homeless)

Develop standardized, scalable, EHR-based care cascades

Develop a Dashboard to monitor progress over time to monitor:

- Population health
- Facility-level quality improvement

4-year Cooperative Agreement with NACHC (currently in Year 4)

America's Voice for Community Health Care

Project Flow

Initial Cascade

Compile Value Sets

Test for

Feasibility

Literature review & NACHC Advisory Group input
Drafted cascade structure and chose indicators for each step

NIH Value Set Authority Center (VSAC) & pilot sites' EHR records
Developed algorithms to define cascade steps

Scored value sets based on:

- Data availability & accuracy, standardization, ease of use
- Conducted chart reviews
- Test for Validity

• Determined whether value sets accurately reflect cascade outcomes

• Populated validated cascade model with EHR data

Cascade

Final

Dashboard

- Developing an online Dashboard to display the data
- Piloting for public health surveillance and facility-level quality improvement

Initial "Consensus" HCV Care Cascade from NACHC Advisory Group Meeting January 2017

Chose data indicators for each step

Standardized Value Sets

Cascade step algorithms

6-month Learning Collaborative with 5 Pilot Sites

- 153 organizations and 1,903 health center sites across all 50 US states
- 13,132 providers
- 2.4 million patients
- 5 EHR systems

Cascade Step Dependencies

Separate anti-HCV and RNA Testing Bars

Stacked Testing Bar

Drawback: Cascade does not show how many patients with a positive anti-HCV have not been tested for RNA

Modified HCV Care Cascade

Combined anti-HCV and HCV RNA testing steps & removed step dependencies

 Prevented exclusion of patients who had been tested for anti-HCV outside the system

Dropped "Linked to Care" step

Feasibility

Test for

Validity

Final Cascade No standardized indicators
 (sites use local codes or unstructured fields)

Reconsidered "Initiated tx" language

 RXNORM code doesn't necessarily mean a patient filled the Rx (or took it)

Dropped "Completed Treatment" step

- No reliable indicators (no Rx utilization data)
- Tx completion and SVR are essentially duplicative (SVR >95%)

Final HCV Care Cascade – Data from 5 Pilot Sites

Alternative – Minimalist HCV Care Cascade

Minimalist HCV Care Cascade

Next Steps

Publish care cascade methods and validation results (in progress)

Create a Dashboard that can display aggregate facility-level care cascade data on an ongoing basis.

Pilot the Dashboard:

- Population health monitoring
 - (CDC, state health departments)
- Facility-level intervention testing to improve progress through the HCV care cascade (4 health center sites ongoing)

Conclusions

EHR data can provide important information to enhance an HCV care cascade

Important to align the concept with the data available (e.g., treatment prescribed vs. initiated)

Cascades can be built differently based on sites' needs and data available (e.g., local codes)

Distilling the cascade into its essential elements, with high-quality data, can improve its usefulness

Next Steps

- Explore developing your hepatitis C care cascade with what data you have.
- Route your care cascade questions to David Stephens (dstephens@npaihb.org).
 - David will batch questions and send to CDC to respond to
 - If there are recurring questions, CDC may hold office hours

(EXTRA SLIDES)

HCV Care Cascade Algorithms

Care Cascade Step Definitions

- HCV Tested anti-HCV only
 - LOINC code for an anti-HCV test is present

• HCV Tested – RNA only

• LOINC code for an HCV RNA test is present

• HCV Tested – both anti-HCV and RNA

- LOINC code for an anti-HCV test is present AND
- LOINC code for an HCV RNA test is present

• HCV RNA+

• LOINC code for a positive HCV RNA test result is present

HCV Care Cascade Algorithms

Prescribed Treatment

At least one of the following 3 conditions is met:

1. An RXNORM code for HCV medication is present

(NOTE: Ribavirin or interferon alone do not qualify as HCV treatment; they must be prescribed in combination with each other or with a direct-acting antiviral on the med list)

- 2. A LOINC code for an initial positive HCV RNA result is present, followed by LOINC codes for 2 additional RNA test results at any interval, regardless of result
- 3. A patient qualifies for the SVR step (below) but does not meet conditions 1 or 2 above (treatment is implied by cure).

NOTE: A patient <u>can</u> qualify for the "Prescribed Treatment" step regardless of whether they qualify for the "HCV Tested" or" RNA+" steps.

• SVR

- A LOINC code for an initial positive HCV RNA result is present, followed by BOTH:
 - LOINC codes for 2 additional RNA test results at any interval (regardless of result) AND
 - LOINC code for 1 additional negative RNA result ≥12 weeks later

NOTE – A patient <u>can</u> qualify for the "SVR" step regardless of whether they qualified for the "Treatment Prescribed" step.

Additional HCV Linkage Indicators (early)

Linked to (Care
Newly diag	nosed with chronic HCV in the reporting period
Tests/proc	edures ORDERED
	HCV genotype test ordered
	CT scan ordered with HCV listed as reason
	MRI ordered with HCV listed as reason
	Liver function tests ordered with HCV listed as reason
	APRI/FIB-4 components ordered
Test/proce	dure RESULTS available in EHR
	HCV genotype test result available in EHR results section
	Ultrasound results available in EHR
	Liver biopsy results available in EHR
	Fibrosure results available in EHR
	Fibroscan results available in EHR
	APRI/FIB-4 component results available in EHR
	Any follow-up HCV RNA test result in EHR results section after initial RNA

Test/procedure RESULTS available in a note
HCV genotype test result available in EHR results section
Ultrasound results available in EHR
Liver biopsy results available in EHR
Fibrosure results available in EHR
Fibroscan results available in EHR
APRI/FIB-4 component results available in EHR
Staging date available in EHR
Evidence of HCV diagnosis discussion with provider
Case management/care coordination
Monitoring/counseling
Evidence of clinic visit with an HCV diagnosis code
Evidence of at least 2 clinic visits with an HCV diagnosis code
Completed referral to ID or GI specialist
HCV prescription order available in EHR

Round 1 HCV pilot – site level data

Kentucky Care 18% tested / 12% anti-HCV+

0					
0					
0					
0					
0					
0					
0					
0			_		
0		-			
0				_	

