TRAUMA AIRWAY MANAGEMENT

A CASE-BASED DISCUSSION

Calvin A. Brown III, MD

Associate Professor of Emergency Medicine

Harvard Medical School January 12th, 2022

DISCLOSURES

- Airway Management Education Center, LLC. Partner
- Wolters Kluwer Editor/Royalties
- UpToDate Emergency Medicine Editor/Royalties

OBJECTIVES

- What makes trauma patients difficult?
- Intubating the unstable trauma patient
- Managing upper airway distortion
- Rescue oxygenation strategies
- Failed airway management in trauma

WHAT MAKES TRAUMA CHALLENGING?

Impaired visualization

Hemodynamic instability

Situational chaos

Agitation

IMPAIRED VISUALIZATION

HEMODYNAMIC INSTABILITY

SITUATIONAL CHAOS

Trauma Team activation Resuscitation Priorities Procedural needs

SHOCK

HYPOXIA

INTOXICATION

PAIN

CASE #I TRUCK VS. OCTOGENARIAN

- 89-year-old crossing the street with a walker
- Uhaul truck going 50 mph in a 25 mph
- Patient is thrown 30 feet into a concrete barrier
- EMS arrives, places c-collar.
- No access upon arrival, on facemask oxygen

CASE #I TRUCK VS. OCTOGENARIAN


A – Facial trauma. SaO2 91% on NRB mask

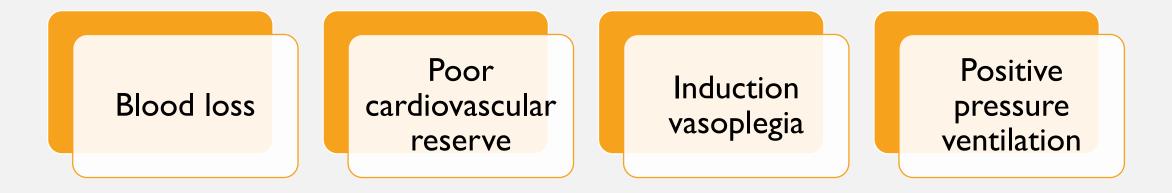
- B RR 20, decreased BS left side
- C Cool, clammy. BP 84/39. HR 121
- D GCS 10, moaning, screaming

E – Clothes removed

PRIORITIES?

- A.) Intubate immediately for hypoxia
- B.) Secondary survey to identify injuries
- C.) Blood, IV access, needle chest, increase FiO₂

• D.) Wrap the pelvis


CASE #I TRUCK VS. OCTOGENARIAN

- B RR 20, decreased BS left side
- C Cool, clammy. BP 84/39. HR 121
- D GCS 10, moaning, screaming

E – Clothes removed

PHYSIOLOGIC DERANGEMENT



Table 3 – Primary analysis comprising multivariable logistic regression model assessing association between *a priori* candidate variables and periintubation cardiac arrest (n = 14,766).

	Odds Ratio (95% CI)
Age, years	1.0 (1.0-1.0)
Sex: female vs. male	1.4 (0.9-2.1)
Weight, kg	1.0 (1.0-1.0)
Indication: medical vs. traumatic	1.0 (0.7-1.6)
Pre-intubation shock: yes vs. no	6.2 (4.5-8.5) ^a
Pre-intubation oxygenation: hypoxemia vs. normoxemia	3.1 (2.0-4.8) ^a
Intubation need emergent: yes vs. no	1.8 (1.2-2.7) ^a
Initial impression of difficult airway: yes vs. no	0.9 (0.7-1.3)
Difficult airway characteristics: yes vs. nob	1.1 (0.9-1.4)
Laryngoscope type: video vs. direct	0.9 (0.7-1.2)
Pre-treatment - vaspopressors: yes vs. no	0.5 (0.2-1.3)
Pre-treatment - fentanyl: yes vs. no	0.9 (0.2-3.1)
Paralytic agent: none vs. succinylcholine	0.5 (0.2-1.2)
Paralytic agent: rocuronium vs. succinylcholine	1.2 (0.9-1.7)
Suspected sepsis: yes vs. no	0.7 (0.4-1.0)
Induction agent: ketamine vs. etomidate	1.6 (1.0-2.5)
Induction agent: none vs. etomidate	2.0 (0.7-6.1)

C-statistic/ROC AUC

Abbreviations: AUC-area under the curve; ROC-receiver operator curve. ^a Confidence interval does not include 1.

0.81

^b Difficult airway characteristics coded as yes if the patient had at least one of the following: reduced neck mobility, Mallampati score greater than 1, reduced mouth opening, airway obstruction, facial trauma, and blood or vomit in airway.

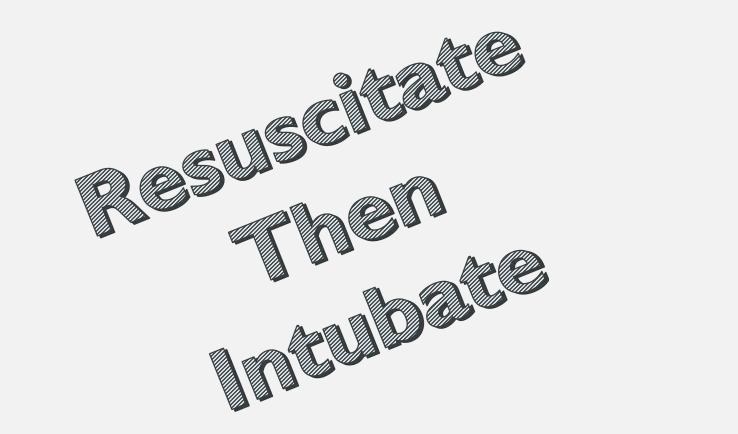
Resuscitation

Available online at www.sciencedirect.com

EUROPEAN.

COUNCE

RESUSCITATION


journal homepage: www.elsevier.com/locate/resuscitation

Peri-intubation cardiac arrest in the Emergency Department: A National Emergency Airway Registry (NEAR) study

Michael D. April^{4,6,*}, Allyson Arana⁴, Joshua C. Reynolds⁴, Jestin N. Carlson⁴, William T. Davis^{6,4,7}, Steven G. Schauer^{6,6,7}, Joshua J. Oliver^{6,4}, Shane M. Summers^{6,6}, Brit Long^{6,7}, Ron M. Walls^{1,4}, Calvin A. Brown 3rd^{1,4}, For the NEAR Investigators

PLAN OF ACTION

IV, O2, Monitor: Volume lines if possible.

10-15 minute resuscitation (uncrossmatched blood).

Increase oxygen flow rate to flush (50 lpm).

Needle left chest.

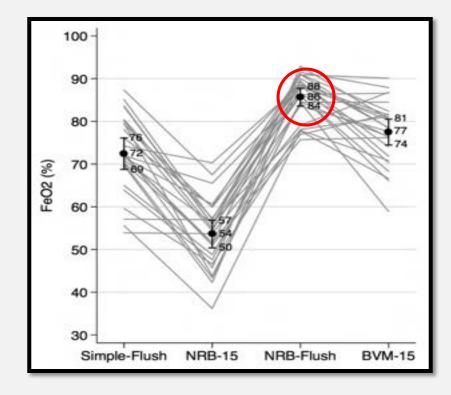
Reassess \rightarrow Shock-sensitive RSI with chest tube.

FLUSH RATE OXYGEN?

AIRWAY/ORIGINAL RESEARCH

Flush Rate Oxygen for Emergency Airway Preoxygenation

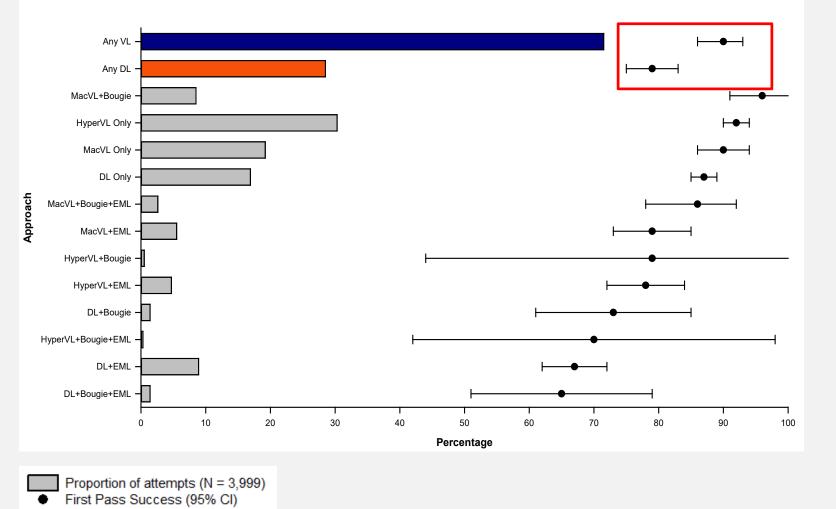
Brian E. Driver, MD*; Matthew E. Prekker, MPH, MD; Rebecca L. Kornas, MD; Ellen K. Cales, MD; Robert F. Reardon, MD *Corresponding Author. E-mail: briandriver@gmail.com, Twitter: @brian_driver.



AIRWAY/ORIGINAL RESEARCH

Flush Rate Oxygen for Emergency Airway Preoxygenation

Brian E. Driver, MD*; Matthew E. Prekker, MPH, MD; Rebecca L. Kornas, MD; Ellen K. Cales, MD; Robert F. Reardon, MD *Corresponding Author. E-mail: briandriver@gmail.com, Twitter: @brian_driver.



WHICH DEVICE?

Mac 4 CMAC Mac 4 DL Flexible Knife endoscope

Video Laryngoscopy is Associated With First-Pass Success in Emergency Department Intubations for Trauma Patients: A Propensity Score Matched Analysis of the National Emergency Airway Registry

Stacy A. Trent, MD, MPH*; Amy H. Kaji, MD, PhD; Jestin N. Carlson, MD; Taylor McCormick, MD; Jason S. Haukoos, MD, MSc; Calvin A. Brown III, MD; on behalf of the National Emergency Airway Registry Investigators

CALVIN'S CRITICAL CONCEPTS

Instability is the biggest risk Resuscitate before you intubate Shock sensitive RSI Video laryngoscopy is THE tool to use.

CASE #2 PHEASANT HUNTING GONE AWRY

- 17-year-old presents with neck swelling and dyspnea.
- Bird hunting with friends in Franklin, NH
- Shot in the neck with bird shot
- Swelling progressing steadily but not rapidly
- Starting to have trouble handling secretions
- Feeling short of breath

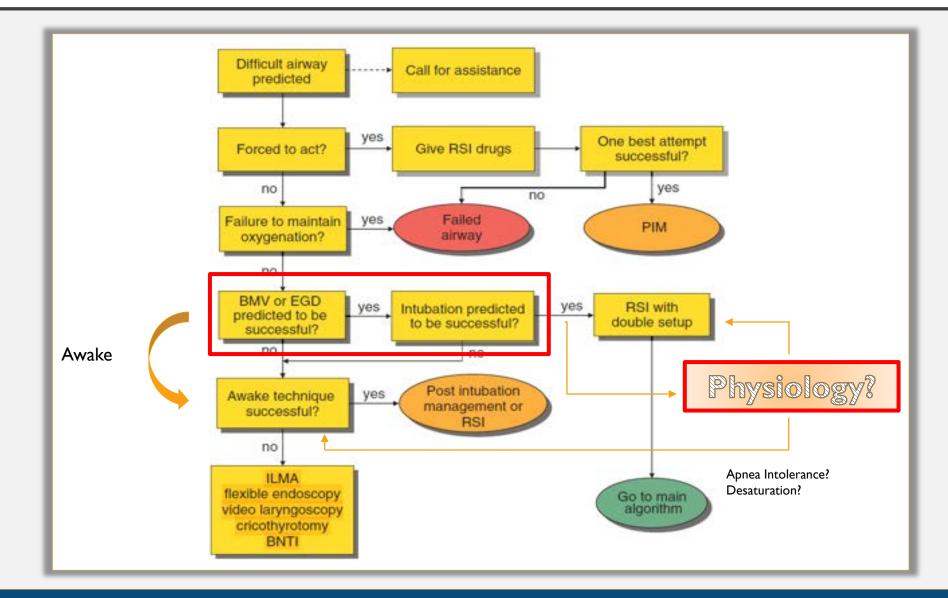
CASE #2 PHEASANT HUNTING GONE AWRY

A – Left neck swelling. SaO2 99%. Trismus

B – RR 28, lungs clear

C – Warm, good pulses. BP 124/89. HR 121

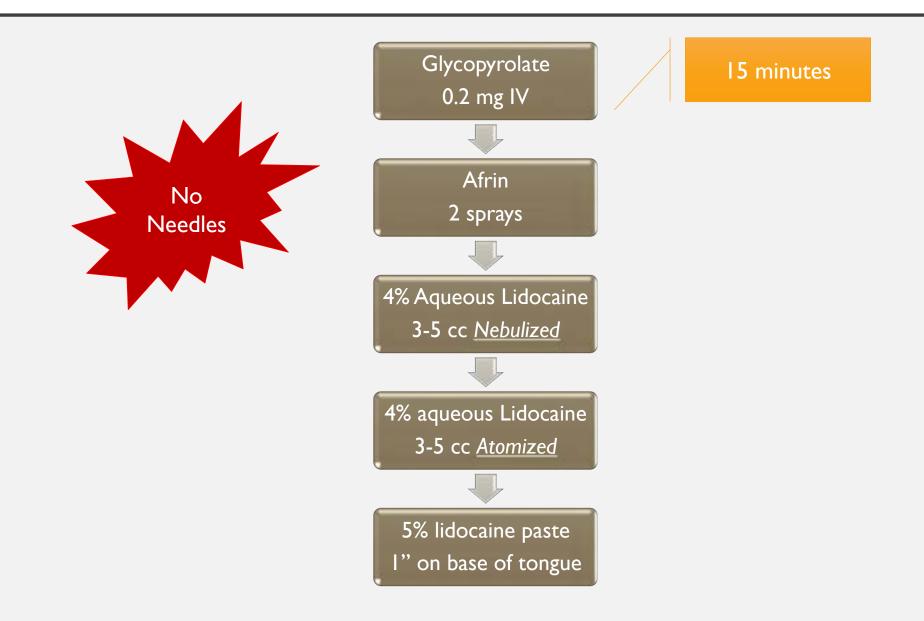
D – GCS 15, MAEW

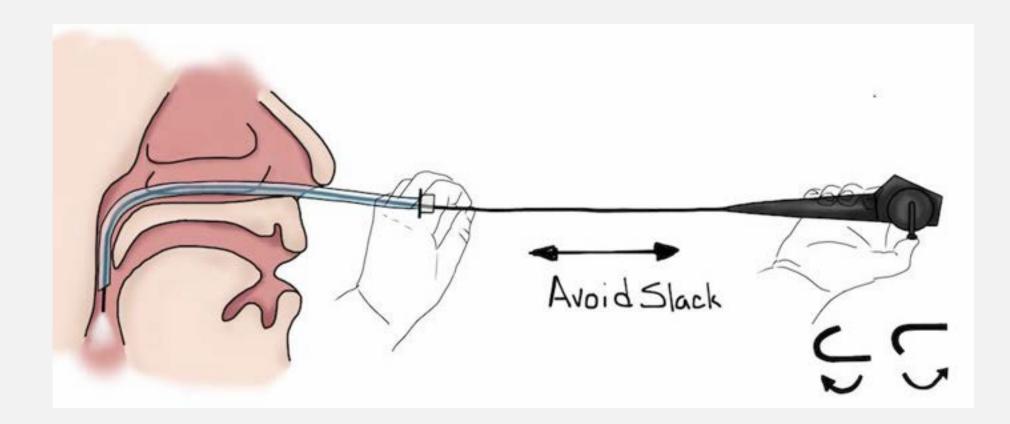

E – Upper clothes removed – no other injury

PRIORITIES?

- A.) Urgent RSI with VL for progressive swelling
- B.) Awake flexible endoscopic evaluation and intubation
- C.) Resuscitate with blood because of instability
- D.) Immediate cricothyrotomy as intubation is doomed to failed

THE DIFFICULT AIRWAY ALGORITHM


TOOLS YOU WILL NEED



MEDS YOU WILL NEED

AWAKE INTUBATION RECIPE

Subtotal Nasotracheal Intubation FIRST!

CALVIN'S CRITICAL CONCEPTS

Airway distortion can confound orotracheal intubation.

Obstruction is minor – awake VL

Obstruction is advanced – often flexible endoscope

If there is no time \rightarrow FTA RSI followed by cric.

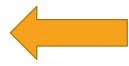
CASE #3 THERMAL AIRWAY INJURY

- 79-year-old presents with stridor and respiratory distress.
- Rescued from house fire 3 hours ago.
- No burns but inhaled super-heated air
- OSH wanted to intubate \rightarrow patient refused.
- Patient arrived sounding like...

CASE #3 THERMAL AIRWAY INJURY

A – Stridulous. SaO2 99% on FM oxygen

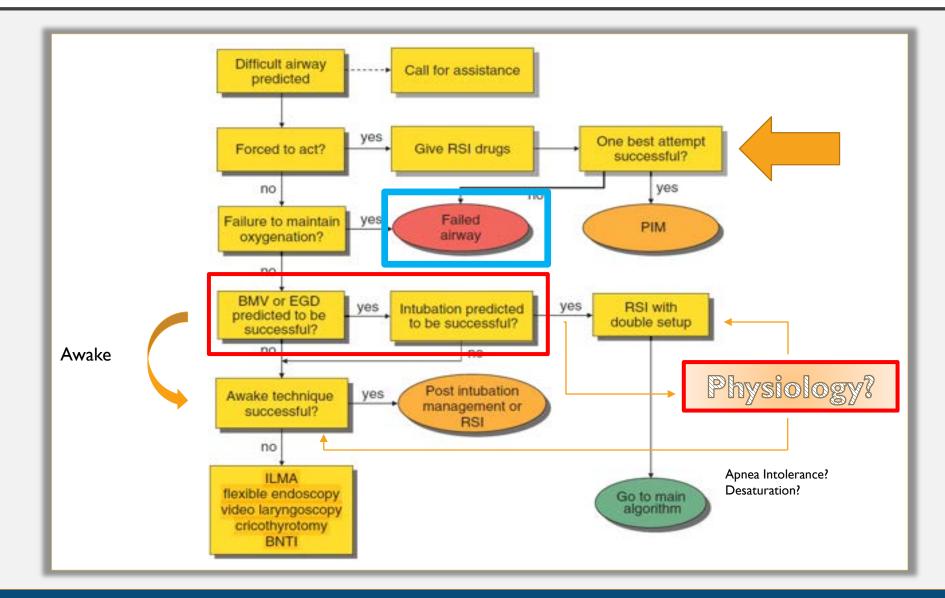
B – RR 28, lungs scattered wheezing


C – Warm, good pulses. BP 184/89. HR 121

D – GCS 15, MAEW

E – Upper clothes removed – no other injury

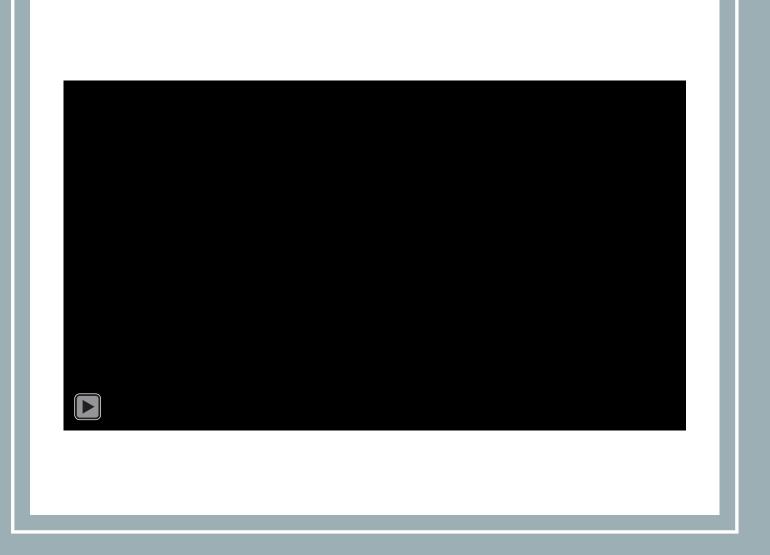
PRIORITIES?


- A.) Immediate RSI and VL with 5-0 ETT
- B.) Awake flexible endoscopic evaluation with likely intubation
- C.) Place an iGel/LMA and attempt to ventilate
- D.) Immediate cricothyrotomy as intubation is doomed to failed

Significant swelling Inspiratory stridor Then....she obstructs, is tugging to breathe but clearly there is no air movement.

What next???

THE DIFFICULT AIRWAY ALGORITHM



CRICOTHYROTOMY PROCEDURE

- Our strongly held opinion of the best method:
- I) Open surgical technique: 3 to 6 cm vertical skin
- incision, horizontal CTM stab incision with #10 or #20
- scalpel, rotate blade into sagittal plane.
- 2) Pass bougie* (15F, males; 10F, females) into airway.
- 3) Pass cuffed ETT (6.0 mm, males: 4.5 mm females).
- 4) Inflate cuff, remove bougie.
- 5) *consider trach hook first if high BMI

Open, Bougie-assisted Cricothyrotomy (BAC)

CALVIN'S CRITICAL CONCEPTS

 $CI:CO \rightarrow Cric$

Performed in < 90 seconds

Bougie-aided

*** Getting yourself to do it is the biggest hurdle.

CASE #4 MY LEG HURTS

- 36-year-old presents with altered mental status and right leg pain.
- Drinking, fell from 3rd floor balcony onto pavement.
- 280 lbs. Bearded. R open femur fracture.
- Screaming in pain, hard to control. C-collar placed.

CASE #4 MY LEG HURTS

A – SaO2 99%. Agitated. Maintaining airway

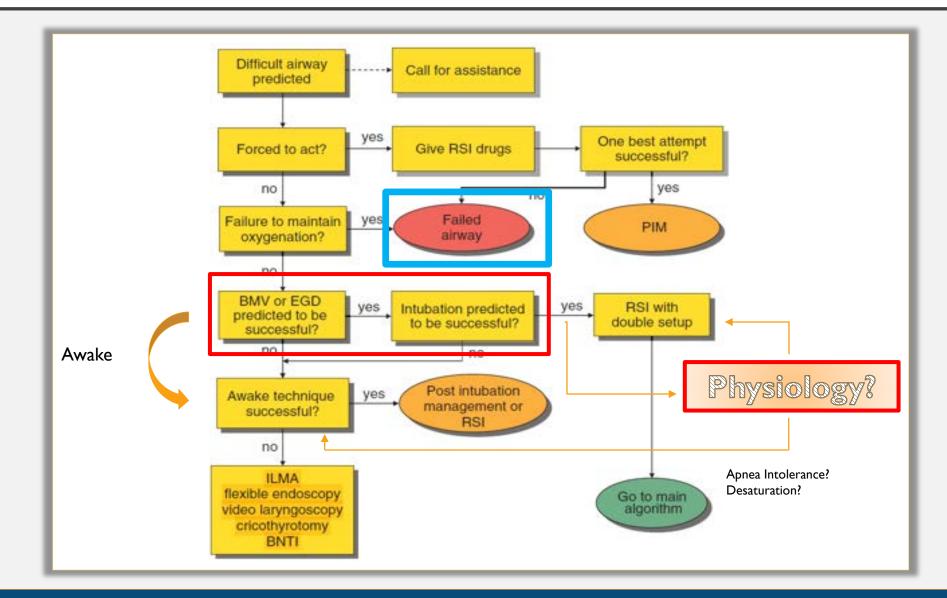
B – RR?? Lungs clear. No chest trauma

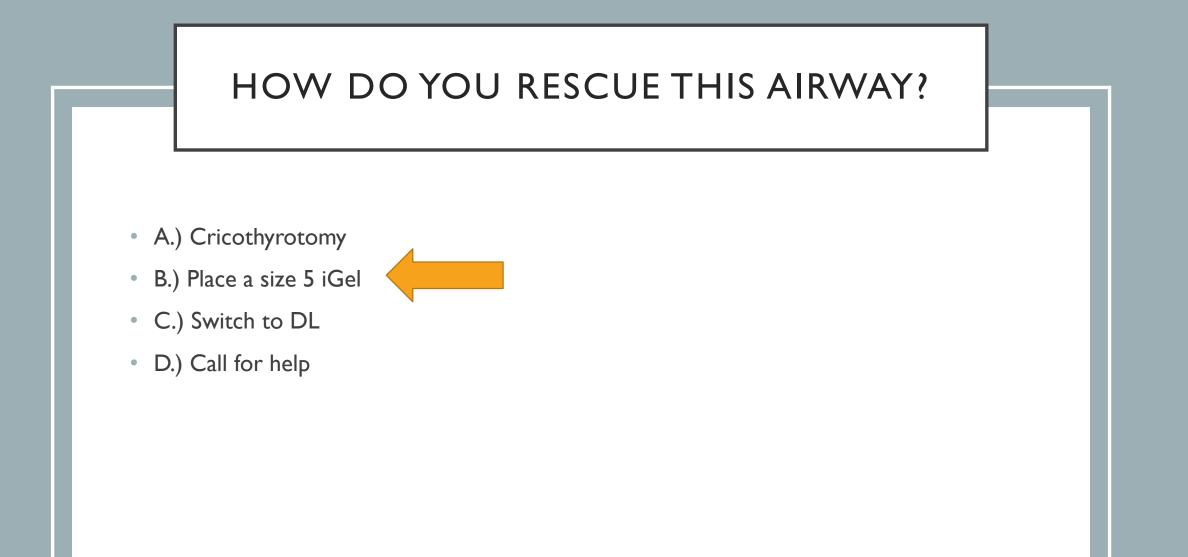
C – BP 104/72. HR 101. R open femur, swelling thigh compartment

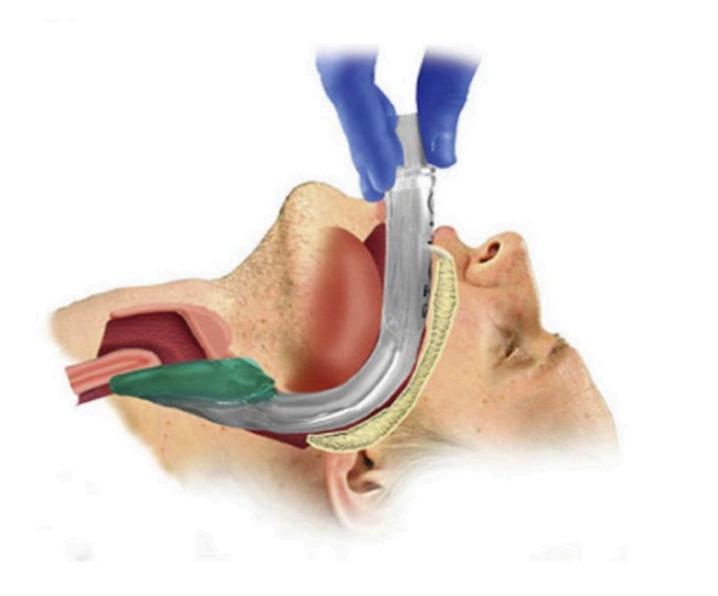
D – GCS I3. Moving everything x R leg

E – Clothes cut off.

PRIORITIES?


- A.) Intubate to facilitate workup
- B.) Ortho consult and gentamicin for open fracture
- C.) Central access for fluids/blood
- D.) CT scan to identify internal injuries


RSI WITH DOUBLE SETUP


- GVL yields CL 2a view.
- Can't navigate chords with ETT.
- Sats slowly drop into upper eighties.
- Attempts at bagging → confounded by habitus and beard.
- Sa0₂ 84% slowly dropping

THE DIFFICULT AIRWAY ALGORITHM

IGEL IN SITU

AIRWAY/EXPERT CLINICAL MANAGEMENT

Managing the Out-of-Hospital Extraglottic Airway Device

Darren Braude, MD, EMT-P*; Michael Steuerwald, MD; Trent Wray, MD; Richard Galgon, MD

*Corresponding Author. E-mail: dbraude@salud.unm.edu, Twitter: @darrenbraude.

0196-0644/\$-see front matter Copyright © 2019 by the American College of Emergency Physicians. https://doi.org/10.1016/j.annemergmed.2019.03.002

WHY AN EGD?

- Oxygen is most important
- Can facilitate endotracheal intubation
- Can stay in place for 4 hours
- Blindly and easily placed
- Successful when placed
- Might save the patient from getting a cric

CALVIN'S CRITICAL CONCEPTS

EGD is an underutilized reoxygenation tool. Highly successful when placed.

Consider when bagging is challenging.

If sats continue to drop \rightarrow Cric

THE END

Questions?