Geriatric Trauma in the Emergency Department

Naomi George, MD MPH, University of New Mexico March 8th 2022

Why are we here?

My name is Naomi

I am here because I'm passionate about improving ED care for older adults...

You can contact me nageorge@salud.unm.edu

Physiology, Geriatric Trauma Triage? Management Pearls and Pitfalls,

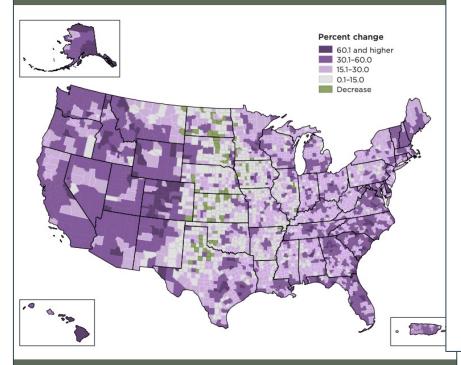
Minor

Major


ED Geriatric Falls Assessment, Prevention, Programs, and Evidence

Misc.

Elder Speak, Clinical Momentum and Clinical Nihilism





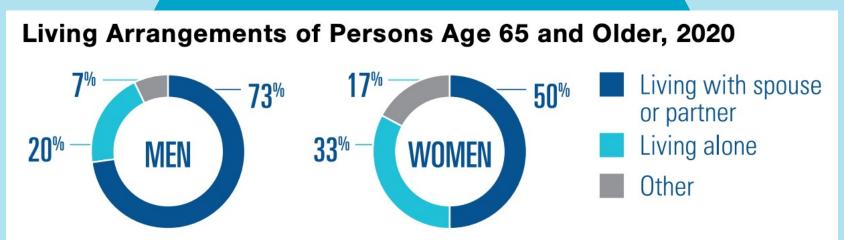
Older and Growing

Percent Change among the 65 and Older Population: 2010 to 2019

Persons Age 65 and Older as a Percentage of Total Population, 2019

Source: U.S. Census Bureau, Population Estimates

United States U.S. Department of Commerce U.S. CENSUS BUREAU census.gov


Source: Vintage 2019 Population Estimates www.census.gov/programs-surveys/popest.html

Poll:

What Percentage of Older Adults Reside in a Nursing Home?

a) < 1% b) 1-2% c) 5-10% d) 10-15% e) >15%

Source: U.S. Census Bureau, Current Population Survey, Annual Social and Economic Supplement

Increasing Population, More Trauma

National Trauma Data Bank

• 2003: 23% >65

す

• 2009: 30% > 65

Kozar RA, et al. Injury in the aged: geriatric trauma care at the crossroads. *J Trauma Acute Care Surg.* 2015;78(6):1197–1209.

Solution Major Trauma in The Elderly

- What are the key physiological changes?
- How should we approach trauma triage
- How should we adapt trauma assessment?
- What are the key management issues?

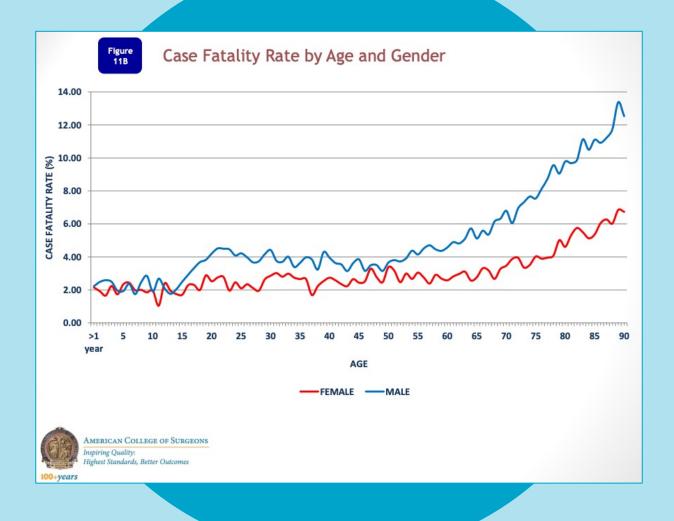


Figure 16

Incidents by Selected Mechanism of Injury and Age

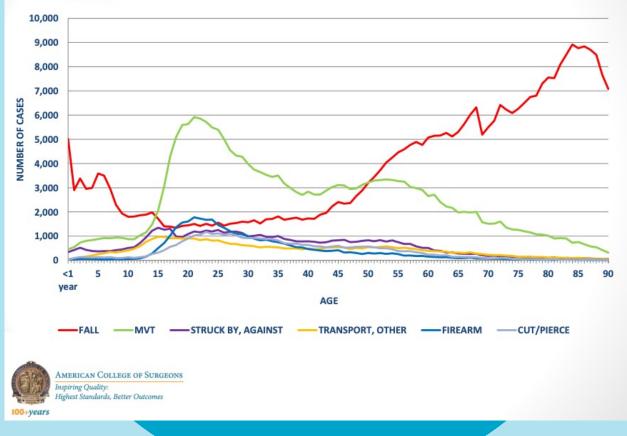
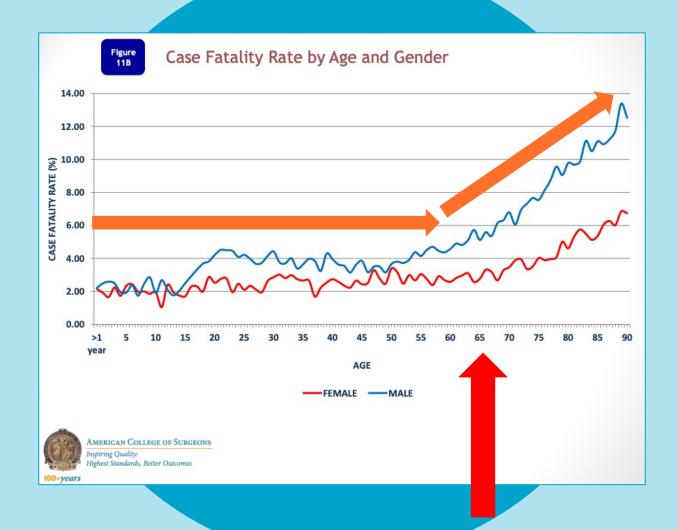


Figure 40

American College of Surgeons


Inspiring Quality: Highest Standards, Better Outcomes

National Trauma Data Bank 2016

Annual Report

The Big Question?

When it comes to outcomes, is the age of the trauma patient that matters, pre-existing comorbidities, or both?

Physiology in Geriatrics

CNS

- ↓ Cortical volume
- ↓ Synaptic density
- ↓ Processing Speed
- Attention
- ↓ Memory

Liver

- ↓ Volume
- \downarrow Blood flow
- ↓ First pass metabolism
- ↓ Drug clearance

Respiratory

- ↓ Elastic recoil
- ↓ Lung Volume

Kidneys

↓ GFR

↓ Renal mass

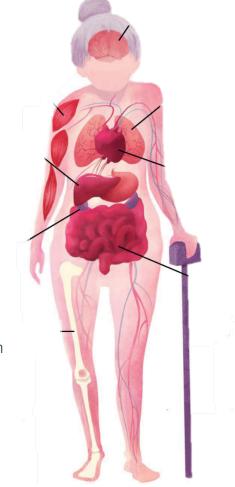
↓ Drug clearance

- ↓ Ventilation-perfusion ratio
- ↓ Arterial compliance
 - Cardiac hypertrophy, Impaired endothelium

↓ Heart rate modulation

Cardiovascular

↓ Cardiac output


Conduction abnormalities

Skeletal

- ↓ Muscle mass
- Strength and power
- ↓ Bone density
- Fracture risk ↑

Digestive

- ↓ Acid secretion
- ↓ Drug absorption

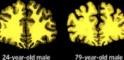
Structural MRI scans show the human brain shrinks with age, while the chimpanzee brain stays about the same size.

The Aging Brain

A normal human brain may shrink up to 15%

over a lifetime.

cerebral cortex


hippocampus

of Sciences

Note: Chimpanzee brains are roughly one-third the size of human brains.

Source: George Washington University.

Proceedings of the National Academy

Chimpanzee frontal lobe

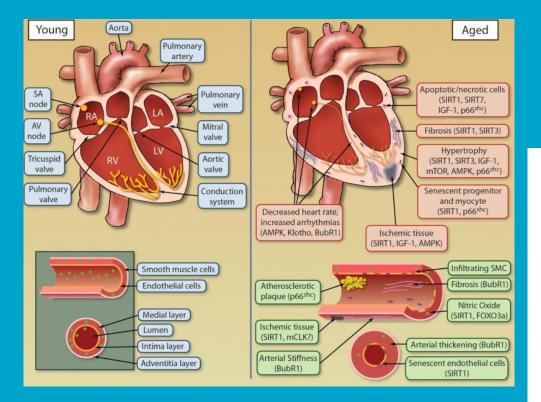
INCLUDE:

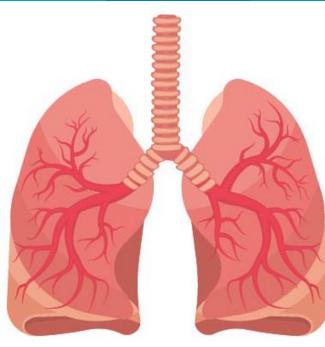
male 42-year-old male

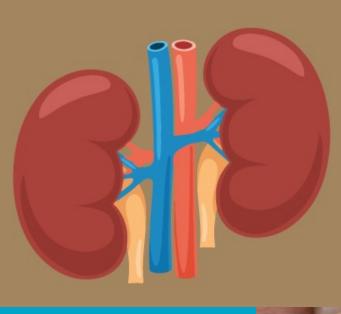
BRAIN-SHRINKING CONDITIONS AFFECTING THE ELDERLY

DEPRESSION can shrink a brain structure called the hippocampus that is important in learning and memory, compared with people who have never been depressed.

ALZHEIMER'S DISEASE can shrink the brain by about 10%, compared to those of healthy people. In its later stages, the cerebral cortex atrophies, which affects judgment and emotional control. But several brain regions also appear enlarged among those with the disease.


POOR MEMORY may stem from a fractional shrinkage in the hippocampus. People who occasionally forget an appointment or a friend's name, or whose thinking has slowed may have lost brain volume.


Loss of neural tissue and white matter


Reduction in blood flow

Decrease serotonin, dopamine, **acetylcholine receptor**s

Cook DJ, Rooke GA. Priorities in perioperative geriatrics. Anesth Analg. 2003 Jun;96(6):1823-1836.

Geriatric Triage?

High Mortality

Poor sensitivity and specificity

Improve outcomes?

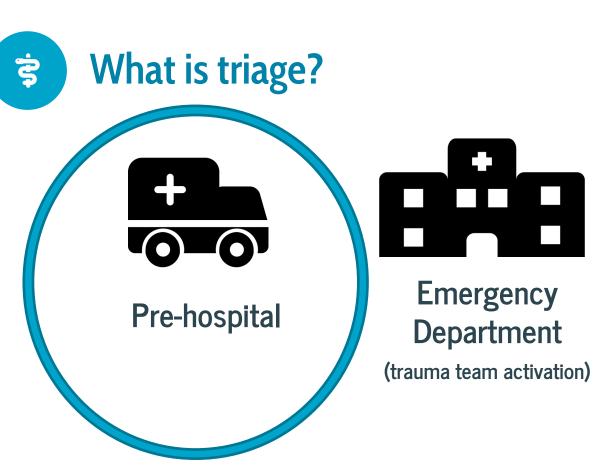
Increased cost

Over triage and unmanageable volumes

Blunting enthusiasm/ response

Geriatric Trauma Triage: Benefits

Why Triage?

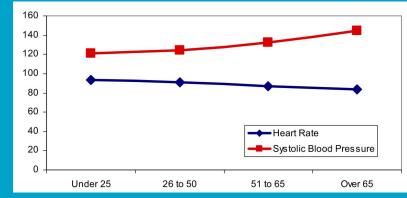

Goal: ensure proper injured resources and disposition

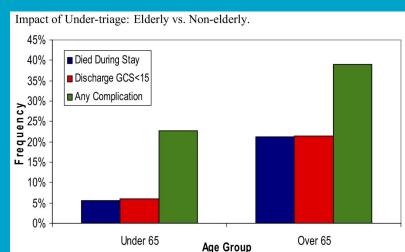
Should age matter?

• Goal: Ensure proper resources for geriatric patients

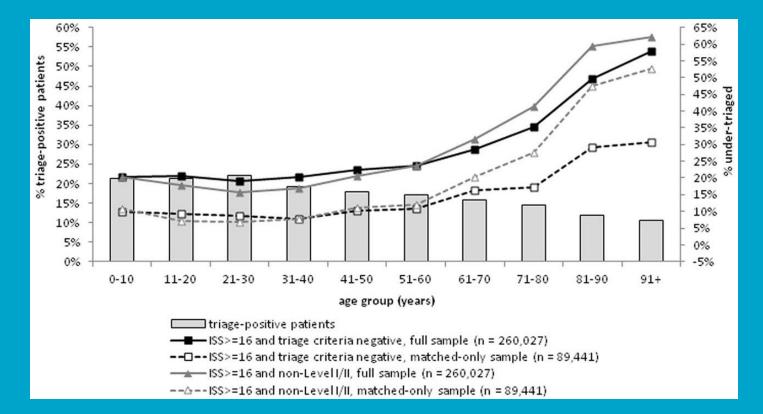
How should care change for geriatric trauma patient?

• Goal: ensure best outcomes for geriatric trauma patients

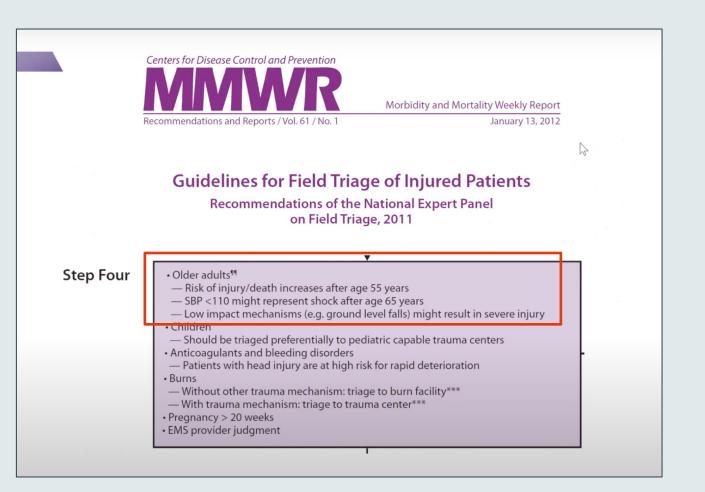



Care pathways

within hospital



- 2009 study state of Washington trauma triage 2000-2004
- Examined physiological parameters based on age quartiles
- HR was lower and BP higher for geriatric patients
- No difference in ISS between young and old, but far fewer trauma activations



Lehmann R, et al. The impact of advanced age on trauma triage decisions and outcomes: a statewide analysis. Am J Surg. 2009 May;197(5):571-4

Under triage increased with age. Age may not be sufficient to modify trauma triage

Nakamura Y, Daya M, Bulger EM, et al. Evaluating age in the field triage of injured persons. Ann Emerg Med. 2012;60(3):335-345.

State of Ohio Geriatric Triage

- Retrospective all adults 2006-2011
- > 100k patients
- Geriatric =/>70
- Comparison of Ohio triage to standard
- Outcome of proper triage (ISS > 15, OR visit within 48 hours, any ICU stay, hospital mortality)

criteria and adult trauma triage criteria for EMS providers. ²³						
Geriatric Triage Criteria (Age ≥70 Years)*	Corresponding Adult Triage Criteria					
Physiologic						
Systolic blood pressure less than 100 mm Hg, or absent radial pulse with carotid pulse present	Systolic blood pressure less than 90 mm Hg, or absent radial pulse with carotid pulse present					
GCS score ≤14 in trauma patient with a known or suspected traumatic brain injury	GCS score \leq 13					
Anatomic						
Fracture of 1 proximal long bone sustained from motor vehicle crash Injury sustained in 2 or more body	Fractures of 2 or more proximal long bones No corresponding adult criteria					
regions						
Cause of injury	No corresponding adult exiteria					
Pedestrian struck by motor vehicle Fall from any height, including standing falls, with evidence of a traumatic brain injury*	No corresponding adult criteria No corresponding adult criteria					
*Traumatic brain injury is defined as decrease in level of consciousness from baseline, unequal pupils, blurred vision, severe or persistent headache, nausea or vomiting, or change in neurologic status. ²³						

Differences between Obio's 2000 deristric trauma triade

Table 1

Table 3. Test characteristics of geriatric and adult trauma triage criteria for predicting need for trauma center care, stratified by age.*

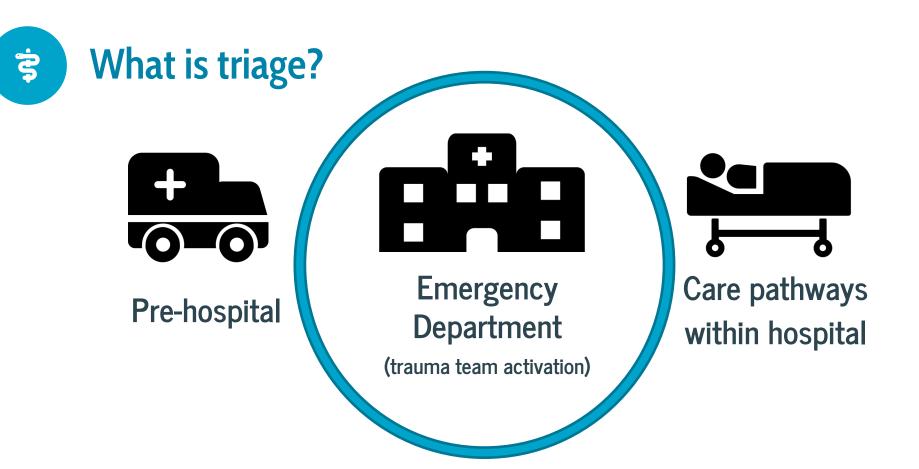
Percentage								
	Geriatric Triage Criteria		Adult Triage Criteria			Differences Between Criteria		
Outcome Measure	Sensitivity (95% CI)	Specificity (95% Cl)	AUC	Sensitivity (95% CI)	Specificity (95% CI)	AUC	Difference in Sensitivity (95% Cl) [†]	Difference in Specificity (95% CI) †
ISS score >15								
Age ≥70 y	93 (92 to 93)	49 (48 to 49)	0.71	61 (60 to 62)	61 (61 to 62)	0.61	32 (30 to 33)	-12 (-12 to -13)
Age ≤70 y	94 (94 to 95)	35 (35 to 35)	0.65	87 (86 to 87)	44 (44 to 45)	0.65	8 (7 to 8)	-9 (-9 to -9)
OR visit <48 h								
Age ≥70 y	47 (46 to 49)	42 (41 to 42)	0.44	35 (34 to 37)	57 (56 to 58)	0.46	12 (11 to 13)	-16 (-15 to -16)
Age ≤70 y	73 (72 to 73)	27 (26 to 27)	0.5	65 (64 to 65)	36 (35 to 36)	0.5	8 (8 to 8)	-9 (-9 to -9)
ICU stay								
Age ≥70 y	81 (80 to 82)	48 (47 to 48)	0.64	56 (55 to 57)	61 (60 to 62)	0.58	25 (24 to 26)	-13 (-13 to -13)
Age ≤70 y	91 (90 to 91)	34 (33 to 34)	0.62	82 (82-83)	42 (42 to 43)	0.62	8 (8 to 9)	-9 (-9 to -9)
Mortality								
Age ≥70 y	90 (89 to 91)	45 (45 to 46)	0.68	74 (72 to 76)	60 (60 to 61)	0.67	16 (14 to 17)	-15 (-15 to -15)
Age \leq 70 y	99 (99 to 100)	30 (29 to 30)	0.64	98 (97 to 98)	39 (39 to 39)	0.68	2 (0 to 2)	-9 (-9 to -10)

AUC, Area under the curve.

Data derived from combining all 5 imputed data sets, using Rubin's rules.

[†]Differences are geriatric criteria minus adult criteria.

Pre-Hospital Triage: Systematic Review


- 11 studies of geriatric triage tools
- Different definitions of "geriatric": >55 >65 and > 70
- Triage Criteria
 - SBP < 110 < 100 < 90
 - HR < 60 or > 100
 - Mechanisms, Anticoagulation use
- ISS > 15 gold standard of "seriously injured patients"
- Conclusion: Improved sensitivity at the expense of specificity

Field Trauma Triage among Older Adults: A Cost-Effectiveness Analysis

Brandon C Maughan, MD, MHS, MSHP, Amber Lin, MS, Aaron B Caughey, MD, PhD, Eileen M Bulger, MD, FACS, K John McConnell, PhD, Susan Malveau, MS, Denise Griffiths, BS, CCRP, Craig D Newgard, MD, MPH

- Used Modeling to demonstrate effects of changing field triage for injured elderly patients, based on 3621 patients: What happens if we use BP < 110 & HR > 100?
- Outcomes:
 - Increased transport of severely injured patients $23\% \rightarrow 35\%$
 - Results in increased transport of 70/10,000 patients to a trauma center
 - 1,892 non-seriously injured patients
 - Cost: \$ 1,236,295 per quality adjusted life year

Trauma Team Activation (TTA)

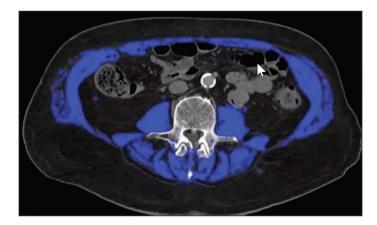
- 2019, retrospective 5 yr of TTA for > 70
- Geriatric TTA criteria= >70 + mechanism
- How does geriatric TTA criteria perform compared to standard TTT criteria?
- Outcomes:

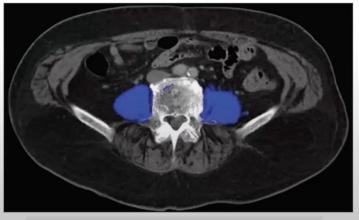
Ż

- mortality,
- ICU, OR/IR
- ED intubation,
- ISS>15

- 73% age alone, 27% met standard TTA
- Over triage rate: 40%
- Geriatric TTA alone (neg standard TTA)
 - 9% mortality
 - 27% ISS > 15
 - 56% ICU admission
 - 13% intubated in the ED
 - 12% OR/IR

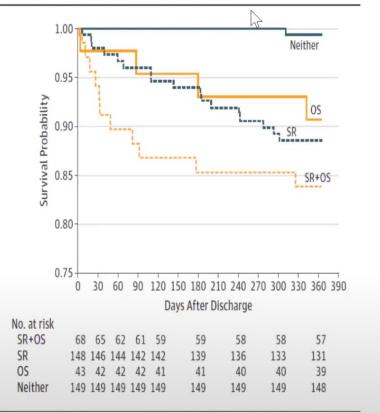
Increased trauma activation is not equally beneficial for all elderly trauma patients


Bryan W. Carr, MD, Peter M. Hammer, MD, Lava Timsina, PhD, MPH, Grace Rozycki, MD, MBA, David V. Feliciano, MD, and Jamie J. Coleman, MD, Indianapolis, Indiana


- Age > 70 = full TTA
- 2400 patients had full TTA
 2011 2016
- Outcomes: mortality & LOS
- TTA \$21,326 x 1645 over triaged patients = total cost \$9,823,940

	Pre Age > 70 FTTA	Post Age > 70 FTTA
Ν	1919	2422
Age	80.4	81
ISS	11.58	12.45
LOS	5.9	5.8
Mortality	8%	7.1%
FTTA	220	696
PTTA	768	495

- Retrospective study 2011 2014
- Age =>65
- Trauma CT scan
- Sarcopenia: total cross-sectional psoas mm at L3
- Osteopenia: < 100 HF at the L3 vertebra
- Outcomes: complications, LOS, mortality disposition



Robert D Boutin Lawrence Yao, Robert J Canter Leon Lenchik Sarcopenia: Current Concepts and Imaging Implications AJR 2015 Sep;205(3):W255-66.

Sarcopenia and Osteopenia

 Increased mortality at 1-year for sarcopenia, osteopenia and both Figure 2. Kaplan-Meier Survival Estimates Stratified by Radiologic Indicators of Frailty

Kaplan SJ, et al. Association of Radiologic Indicators of Frailty With 1-Year Mortality in Older Trauma Patients: Opportunistic Screening for Sarcopenia and Osteopenia. JAMA Surg. 2017 Feb 15;152(2)

Frailty Screening

- Prospective 2011-2013 of trauma pts > 65
- Frailty Index (50 pre-admit variables)
- Frailty = score > 0.25
- 250 pts, mean age 75
- 41% rate of frailty
- Compared to non-frail patients, frail patients had higher rates of hospital complication and mortality

	No. (%)		
Complication	Frail Status (n = 110)	Nonfrail Status (n = 140)	P Value
Infectious			
Sepsis	4 (3.6)	2 (1.4)	.01
Urinary tract	12 (10.9)	9 (6.4)	.04
Hematologic			
Deep venous thrombosis	7 (6.4)	5 (3.6)	.01
Disseminated intravascular coagulation	2 (1.8)	2 (1.4)	.10
Pulmonary			
Pneumonia	10 (9.1)	6 (4.3)	.01
Pulmonary embolism	2 (1.8)	3 (2.1)	.11
Reoperation	4 (3.6)	3 (2.1)	.54
Cardiac	0	0	NA
Renal	0	0	NA

Table 3. Outcome Measures			
Variable	Frail Status (n = 110)	Nonfrail Status (n = 140)	P Value
Length of stay, mean (SD), d			
Hospital	7.3 (6.2)	5.4 (4.8)	.01
Intensive care unit	4.6 (3.2)	3.0 (2.1	01
Ventilator use	1.6 (0.9)	1.4 (0.7)	:35
Discharge disposition, No. (%)			
Home	45 (40.9)	75 (53.6)	.04
Rehabilitation	24 (21.8)	47 (33.6)	.04
Skilled nursing facility	36 (32.7)	18 (12.9)	.01
In-hospital mortality	5 (4.5)	0	.01

Joseph B,. Superiority of frailty over age in predicting outcomes among geriatric trauma patients: a prospective analysis. JAMA Surg. 2014 Aug;149(8):766-72.

- Trauma pts > 65
- 5-item FRAIL Scale >> 90% screened as frail
- Pathway" early ambulation, non-pharm delirium prevention, bowel/pain reg, nutrition, PT/OT, geriatric assessment
- Decreased delirium and 30 day readmissions

Patient outcome	Pre-intervention group, % $(n = 125)$	Post-intervention group, % $(n = 144)$	p Value	Absolute risk reduction, %
Delirium	21.60	12.50	0.04^{*}	9.1
Major complication	28.00	28.47	0.93	-0.4
In-hospital mortality	7.20	4.17	0.28	3.0
Readmission within 30 d	9.60	2.78	0.01*	6.8
Readmission within 30 d *Significant.	9.60	2.78	0.01*	

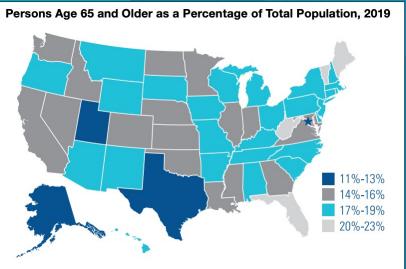
Table 3. Patient Outcomes after Implementation of the Frailty Identification and Care Pathway

Frailty Pathways Can Improve Outcomes

Bryant EA, Frailty Identification and Care Pathway: An Interdisciplinary Approach to Care for Older Trauma Patients. J Am Coll Surg. 2019 Jun;228(6):

Geriatric Trauma Triage: Approach

Should we use geriatric triage?


• Yes...but what thresholds?

Should age matter?

• Yes, but only until we can perform more accurate risk assessment

Should care change for geriatric trauma pts?

 Yes, frailty pathways can improve outcomes

Source: U.S. Census Bureau, Population Estimates

Geriatric Trauma Triage

Local and Regional Capacity:

- How many EMS systems in your area?
- Create concordance around a geriatric triage guideline that allows you to meet your communities needs, based on your resources
- How many hospitals are in your area? Does it matter which hospital you go to?
- Create an approach to regional geriatric care based on your hospital capacity and that of others in the area
- ED Capacity: do you have a pharmacist? A CT scan, an MA to perform Frailty Screening?

Geriatric Trauma Triage: Transfer

- Most elderly trauma patients are cared for a non-trauma centers
- Elderly less likely to be transferred to a trauma center when matched with younger patients
- Yet, transfer to geriatric trauma center is assoc. with 25% reduction in mortality
- Strongly consider transfer for these patients if your center does not have multidisciplinary geriatric trauma care

Major

Physiology, Geriatric Trauma Triage? Management Pearls and Pitfalls,

Minor

ED Geriatric Falls Assessment, Prevention, Programs, and Evidence

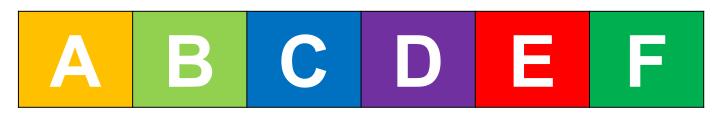
Misc.

Elder Speak, Transitions of Care, Decision Making

Geriatric Trauma Assessment

Airway: Macroglossia/upper airway obstruction; lower esophageal sphincter tone, aspiration risk; arthritis/ decreased neck mobility, difficult airway

Breathing: chest wall rigidity, decreased compliance, tendency for rib fractures, hypoxia, increased V/Q mismatch and decreased gas diffusion > hypoxia


Circulation: diastolic dysfunction along with decrease vessel compliance, catecholamine response, conduction abnormalities, BB and anticoagulant use.

Disability: Increased risk of bleeding, tearing bridging veins in the dura, plaques may increase risk of strokes. Consider ASAP backboard removal, vigilant c-spine protection

Exposure: Decreased thermo-regulation, risk of skin-break down tears

Geriatric Trauma Assessment

80F admitted to the ICU after mechanical fall down 4 stairs. Injuries include: L SDH, L 3-8 rib fractures, and L hip Fracture:

Patient A:

- Hx of HTN, HLP, COPD
- Lives with daughter
- Requires help with shopping, housework, as well as problems with stairs and preparing meals

Patient B:

- HTN, HLP, COPD
- Lives independently
- Walks daily
- No assistance needed for ADLs

Frailty

"A phenotype of multi-system impairment and expanding vulnerability which is associated with a much higher risk of adverse health outcomes that are not entirely explained by aging"

Increased morbidity and mortality

Independent predictor of adverse disposition

Independent predictor of increased complications and LOS

Secondary Survey

- Missed injuries are common
 - · Decreased pain perception
 - · Difficulty localizing pain
- · Common and concerning occult injuries
 - · Head injury

•

- · Cervical Spine Fracture
- · Clavicular
- · Rib Fractures
- · Hip Fracture
- · Pelvic Fracture

Work-up

- · Labs
 - · Lactate and base deficit
 - EtOH and tox
- Imaging
 - · CT Brain and C-spine
 - · Chest / Pelvic xray
 - · Chest CT
 - · CT Abdomen Pelvis
 - Misc.

.

- Social hx
- · Medication hx
- · Mini-mental status

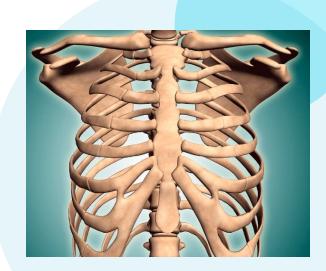
Injury Patterns: TBI

- Primary cause of death in geriatric trauma
- Elderly w/ severe TBI = 80% death or major disability
- Most head trauma is 2/2 falls
- · GCS and exam are NOT reliable
- · HCT almost always indicated
- · Observation period after initial normal HCT?

Injury Patterns: C-SPINE

Consider CT-Cervical Spine any time you are getting a HCT.

- · Increased rates of injury
- · Decreased pain/localization
- Most are from low mechanisms
- Mortality is high


Clear the C-spine ASAP

· Harm associated with delayed clearance

Injury Patterns: Rib Fx

- Age is a strong predictor of outcomes
- · Imaging
 - CXR misses up to 50% of rib fractures
 - · Always consider CT if concerned
- Analgesia is essential
- · Early multimodal pain relief
- · Consider transfer if > 3 fractures, bilateral, flail, or lung disease

Injury Pattern: Hip Fracture

Surgical Management is still superior to medical management:
Medical 4x risk of 1-yr mortality vs surgical management

Early Mobilization is a key component of therapy:

 Among non-operative patients assigned to 30d bed rest had 4x mortality compared to early mobilization

'Accelerated' surgery is not better:

- Accelerated (< 6hours) promoted based on meta-analysis (of observational data)
- HIP ATTACK: Large RCT <6hr surgery vs 24h) No difference in mortality or complication
- · Observational data that adjusts for comorbidities: no difference in outcomes up to 120 hr.

Major

Physiology, Geriatric Trauma Triage? Trauma Evaluation

Minor

ED Geriatric Falls Assessment, Prevention, Programs, and Evidence

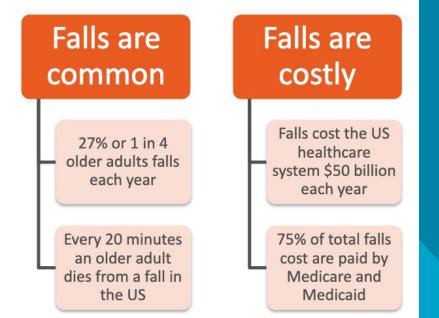
Misc.

Elder Speak, Transitions of Care, Decision Making

Geriatric Trauma : Falls

• Aging process increases falls

- Effects of falls of the individual and the healthcare system
- Consider ways to promote safe mobility in the ED



Physiology of Falls

What are some of the age-related changes disposing to falls?

- Vision loss
- Hearing loss
- Decreases in sensation
- Decrease mobility, flexibility, strength
- Decrease dexterity
- MSK changes

Epidemiology of Falls

Accidental Falls - Caused by environmental hazards or errors

Anticipated physiological falls – Known fall risk, balance loss, impaired cognition, mobility, vision

Unanticipated physiological falls – Cannot be predicted by fall risk scale, e.g. unexpected orthostasis, hypoglycemia, stroke

Intentional fall – Purposeful act

Recurrent fallers – Fallers are twice as likely to fall again

Regardless of mechanism, all older adult fallers have increased mortality after an ED fall visit

Risk Factors for Geriatric Falls

Unsafe Home Environment	 loose carpets bathtubs without rails 	 poor lighting cluttered walkways 	airs
High-risk Medications	 antidepressants sedatives 	opiateshypnotics	
Comorbidities	 Parkinson disease peripheral neuropathy 	 poor vision cognitive impairment	
Nutritional Deficiencies	• low calcium • vitamin D		
Lack of Exercise	 lack of balance strength training 		

STEADI – Stopping Elderly Accidents, Deaths, & Injuries

www.cdc.gov

STEAD Stopping Elderly Accidents, Deaths & Injuries

Screening ED Older Adults

- Have you fallen in the past year?
 - How may times?
 - Where you injured?
- Do you feel unsteady when you walk or stand?
- Do you worry about falling?

STEADI – Algorithm For Fall Risk

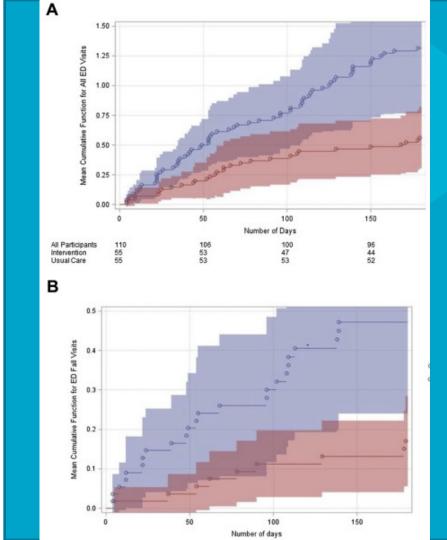
STEADI, Stopping Elderly Accidents, Deaths & Injuries.

What to do with a positive screen?

- Do a multifactorial risk assessment
- Direct interventions to identified risk factors
- Best evidence interventions:
 - Improve home environment
 - Balance, strength, and gait training
 - Vitamin D supplements > 800 IU per day

Summary of the Updated American Geriatrics Society/British Geriatrics Society clinical practice guideline for prevention of falls in older persons. J Am Geriatr Soc. 2011;59(1):148–157.

ED Fall Programs


- Multi-disciplinary ED fall interventions are common in other countries
- · Fewer trials in the US
- Multiple recent interventions showing promise:
- Geriatric Acute and Post-acute Fall Prevention Intervention (GAPcare):
 - RCT, community dwelling ED elderly pts, post-fall
 - Multidisciplinary (pharmacist, physical therapy) approach

ED GAPCare: Outcomes

- · Decrease Increased rates of injury
- · Decreased pain/localization
- Most are from low mechanisms
- Mortality is high

Clear the C-spine ASAP

• Harm associated with delayed clearance

Major

Physiology, Geriatric Trauma Triage? Trauma Evaluation

Minor

ED Geriatric Falls Assessment, Prevention, Programs, and Evidence

Misc.

Elder Speak, Clinical Momentum and Clinical Nihilism

Clinical Momentum and Clinical Nihilism

"system-level, latent, previously unrecognized property of clinical care that may contribute to the provision of unwanted, medically aggressive care"

versus

"the contention that it is impossible to patients through treatment...that many "treatments" do more harm than good, and that one should instead allow nature to take its course"

Elderspeak

A form of communication over-accommodation used w elderly:

- Inappropriately juvenile lexical choices and/or exaggerated prosody;
- Arises from implicit ageist stereotypes;
- Carries goals of expressing care, exerting control, and/or facilitating comprehension; and
- May lead to negative self-perceptions in older adults and challenging behaviors in persons with dementia.

Thank You!