

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Evaluation of Chest Pain

17 April 2023

Leon Ptaszek, MD, PhD, FACC, FHRS MGH Cardiac Arrhythmia Service

Corrigan Minehan Heart Center

ECG Review

Systematic Method for ECG Interpretation

- Rate
- Rhythm
- Axis
- Intervals
- QRS morphology
- P wave morphology
- ST segments and T waves

ECG: Rate Calculation

ECG: Rate Calculation

ECG: Rate Calculation

ECG: Rhythm Assessment

ECG: Axis Assessment

PM Yurchak

Look at I and II:

- If both (+): normal axis
- If (-) in I: right axis deviation
- If (-) in II: left axis deviation

ECG: Axis Assessment

°06

CORRIGAN MINEHAN HEART CENTER

ECG: Interval Measurement

• PR

- 0.12 to 0.2 seconds
- > 0.2 = "1st degree AV Block"

• QRS

- < 0.12 = normal
- > 0.12 = "wide"

• QT

- Ideally < 400 450msec</p>
- Shorter at faster HR

ECG: Interval Measurement

 \geq 2.5mm in men < 40 Verals Sachusette

HEART CENTER

All of the following are correct <u>except</u>:

- 1) In a 56-year-old woman presenting with progressive angina, ST elevation of 1.5mm in leads V2 and V3 meets criteria for ST elevation MI per ESC/AHA/ACC/WHF.
- 2) ST elevations of 1mm in leads II, III, and aVF in the appropriate clinical context are consistent with MI involving the right coronary artery.
- In a 39-year-old man presenting with progressive angina, ST elevation of 2mm in leads V2 and V3 meets criteria for ST elevation MI per ESC/AHA/ACC/WHF.
- 4) ST elevations of 2.5mm in leads V2-V4 are consistent with MI involving the left anterior descending artery.

All of the following are correct <u>except</u>:

- 1) In a 56-year-old woman presenting with progressive angina, ST elevation of 1.5mm in leads V2 and V3 meets criteria for ST elevation MI per ESC/AHA/ACC/WHF.
- 2) ST elevations of 1mm in leads II, III, and aVF in the appropriate clinical context are consistent with MI involving the right coronary artery.
- In a 39-year-old man presenting with progressive angina, ST elevation of 2mm in leads V2 and V3 meets criteria for ST elevation MI per ESC/AHA/ACC/WHF.
- 4) ST elevations of 2.5mm in leads V2-V4 are consistent with MI involving the left anterior descending artery.

ECG Learning Resources

ECG Wave Maven: <u>https://ecg.bidmc.harvard.edu</u>

Excaliper: <u>https://excaliper.com</u>

Case Presentations: Objectives

1. Recognize the causes for chest pain

2. Utilize a risk factor-based strategy to evaluate chest pain

3. Identify patients who require tertiary care

Case Presentations: Objectives

1. Recognize the causes for chest pain

2. Utilize a risk factor-based strategy to evaluate chest pain

3. Identify patients who require tertiary care

Chest pain is the reason for 1% of primary care visits

Differential diagnosis for chest pain is very broad

Distinguishing between cardiac and non-cardiac pain is critical and time-sensitive

Differential diagnosis for chest pain is very broad

Musculoskeletal/chest wall Esophageal/GI	up to 50% up to 20%
Angina	<5%

Distinguishing between cardiac and non-cardiac pain is critical and time-sensitive

Finding the "needle in a haystack"

Evaluation needs to be rapid and efficient

Focus on high-yield items to quickly differentiate between cardiac and non-cardiac chest pain

History:

Presence of CAD/heart disease or risk factors

Physical:

Evidence of heart failure or hypoxemia

Studies:

Abnormal ECG or positive cardiac biomarkers

1. Recognize the causes for chest pain

2. Utilize a risk factor-based strategy to evaluate chest pain

3. Identify patients who require tertiary care

25

Case 1: 24-year-old man with chest pain

- HPI: Constant chest discomfort for two days. Not related to exertion.
- PMH: Anxiety/depression
- Exam: T 98 BP 110/70 HR 90 RR 12
 - JVP normal
 - Lungs clear
 - Heart sounds normal
 - Abdomen benign
 - No lower extremity edema

Case 1: 24-year-old man with chest pain

What findings are consistent with a cardiac etiology?

What findings are consistent with a non-cardiac etiology?

What tests do I need to perform in order to confirm?

Case 1: 24-year-old man with chest pain

Case 1: 24-year-old man with chest pain

History, exam, and ECG are reassuring.

What further evaluations could I perform in order to confirm my suspicion that this patient's chest pain is non-cardiac?

Physical exam / Labs / Other studies

Case 1: 24-year-old man with chest pain

What further evaluations could I perform in order to confirm my suspicion that this patient's chest pain is non-cardiac?

Physical exam / Labs / Other studies Palpate chest wall to determine if point tenderness is present

Case 2: 44-year-old man with chest pain

- <u>HPI:</u> Intermittent exertional chest discomfort that is palliated by rest. Symptoms present for 2 days, progressive.
- PMH: HTN, pre-diabetes
- FamH: Early-onset CAD in father
- Exam: T 98 BP 110/70 HR 90 RR 12
 - JVP elevated
 - Lungs clear
 - Heart sounds normal
 - Abdomen benign
 - No lower extremity edema

Case 2: 44-year-old man with chest pain

What findings are consistent with a cardiac etiology?

What findings are consistent with a non-cardiac etiology?

What tests do I need to perform in order to confirm?

Case 2: 44-year-old man with chest pain

Case 2: 44-year-old man with chest pain

Presentation consistent with STEMI – now what?

- Arrange for immediate transport to tertiary care center
- Oxygen
- Aspirin 325mg
- Sublingual NTG (depending on BP)
- Blood draw for cardiac biomarkers

Case 3: 62-year-old woman with chest pain

- <u>HPI:</u> Progressive chest heaviness for 5 days, not sure if it is worse with exertion.
- <u>PMH:</u> Known CAD with prior MI, HTN, DM, Obesity
- Exam: T 98 BP 110/70 HR 90 RR 18
 - JVP not elevated
 - Lungs clear
 - Heart sounds normal
 - Abdomen benign
 - No lower extremity edema

Case 3: 62-year-old woman with chest pain

What findings are consistent with a cardiac etiology?

What findings are consistent with a non-cardiac etiology?

What tests do I need to perform in order to confirm?

Case 3: 62-year-old woman with chest pain

Case 3: 62-year-old woman with chest pain

What further evaluations could I perform in order to confirm my suspicion that this patient's chest pain is non-cardiac?

Physical exam / Labs / Other studies

Case 3: 62-year-old woman with chest pain

- <u>HPI:</u> Progressive chest heaviness for 5 days, not sure if it is worse with exertion. Sprained ankle, sedentary for 2 weeks.
- <u>PMH:</u> Known CAD with prior MI, HTN, DM, Obesity
- Exam: T 98 BP 110/70 HR 90 RR 18 O2 sat: 88% on RA
 - JVP not elevated
 - Lungs clear
 - Heart sounds normal
 - Abdomen benign
 - No lower extremity edema but pain and palpable cord in left calf

Case 3: 62-year-old woman with chest pain

Presentation possibly consistent with PE – now what?

- Arrange for immediate transport to ED
- Oxygen
- Consideration for heparin IV

1. Recognize the causes for chest pain

2. Utilize a risk factor-based strategy to evaluate chest pain

3. Identify patients who require tertiary care

41

Tertiary care needs to be considered for any patient with chest pain in whom a cardiac and/or pulmonary etiology is suspected

- History
- Physical
- Diagnostic Studies

Tertiary care needs to be considered for any patient with chest pain in whom a cardiac and/or pulmonary etiology is suspected

History:

- Strong family history of heart disease
- Known history of CAD in patient
- Risk factors (e.g., HTN, DM) in patient
- Substance abuse

Tertiary care needs to be considered for any patient with chest pain in whom a cardiac and/or pulmonary etiology is suspected

History:

- Strong family history of heart disease
- Known history of CAD in patient
- Risk factors (e.g., HTN, DM) in patient
- Substance abuse

Be mindful of undertreatment of heart disease in women!

HEART CENTER

Tertiary care needs to be considered for any patient with chest pain in whom a cardiac and/or pulmonary etiology is suspected

Physical:

- Hypoxemia
- Hypotension
- Tachycardia
- Exam consistent with decompensated heart failure
- Unremitting chest discomfort

Tertiary care needs to be considered for any patient with chest pain in whom a cardiac and/or pulmonary etiology is suspected

Diagnostic studies:

- 12-lead ECG
- Bedside Ultrasound
- Blood work (cardiac biomarkers)

1. Recognize the causes for chest pain

2. Utilize a risk factor-based strategy to evaluate chest pain

3. Identify patients who require tertiary care

47

Thank you

Dena Thomas David Stephens Ashley Day Nicholas Cushman Matt Tobey

> >

