Heat Illness and Emergency

Michael T. Mozer, DO

EMS Fellow

Department of Emergency Medicine

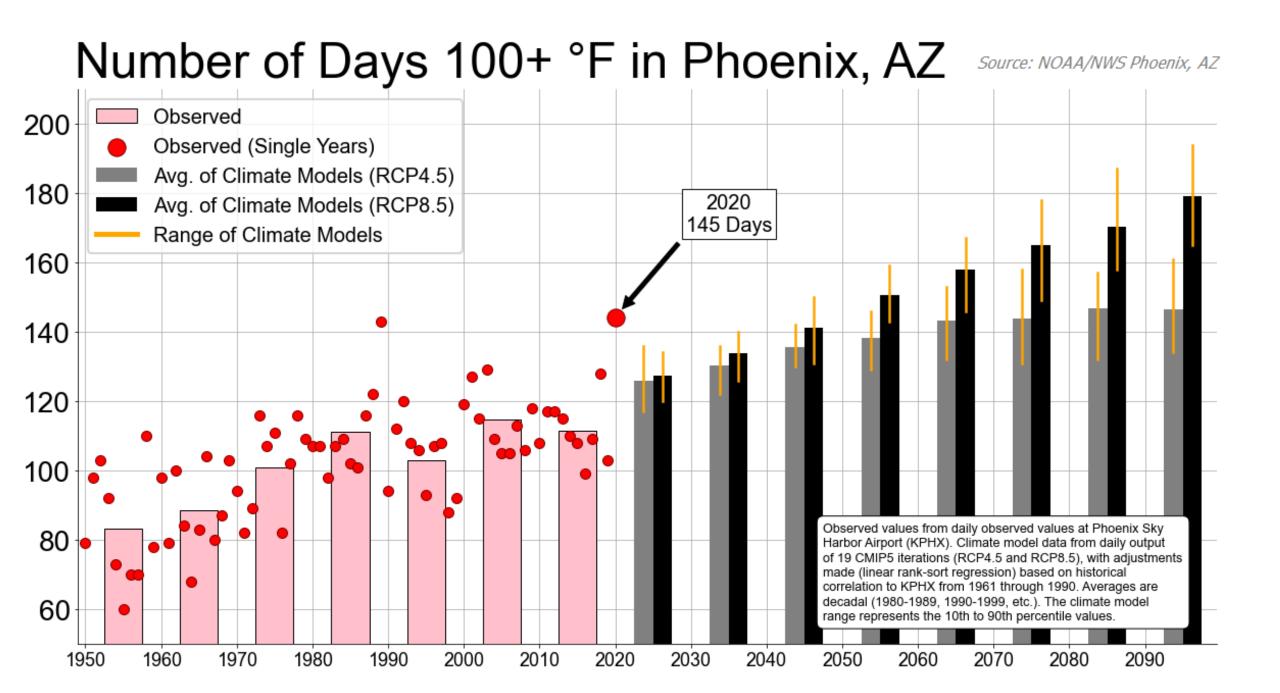
University of New Mexico

Disclosures

• No financial disclosures

Outline

- Introduction
 - Definitions/Epidemiology
 - Heat physics (truncated)
 - Pathophysiology/Physiology
 - Classification (exertional vs. non-exertional/classic)
 - High risk populations
- Presentation/Physical Exam
- Approach to Initial Evaluation and Treatment
- Related Illness and Comorbid Conditions
- Disposition Decisions


Outline

Introduction

- Definitions/Epidemiology
- Heat physics (truncated)
- Pathophysiology/Physiology
- Classification (exertional vs. non-exertional/classic)
- High risk populations
- Presentation/Physical Exam
- Approach to Initial Evaluation and Treatment
- Related Illness and Comorbid Conditions
- Disposition Decisions

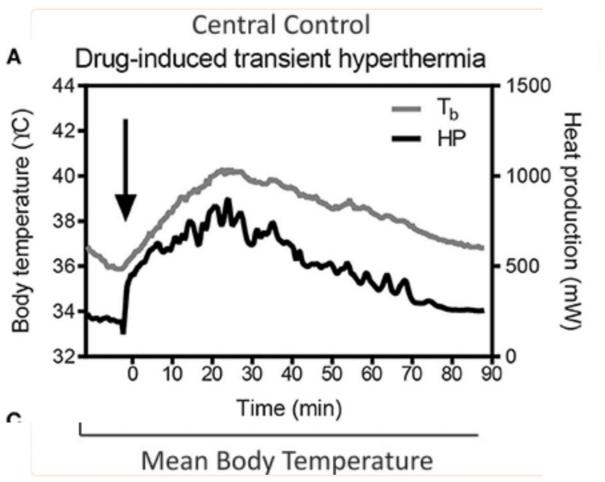
What is heat illness?

- Classically -> "Exposure without alteration of hypothalamic thermoregulation"
- Generally classified by cause
 - A. Classic
 - B. Exertional
 - C. Pharmaceutical
- Difficult to estimate prevalence
- Common in warmer climates, more frequent during heat waves

How does this happen?

- Heat is energy transfer through 3.5 primary mechanisms:
- 1. Conduction
- 2. Convection
- 3. Radiation
- 4. Evaporation

Radiation (<95F)


Evaporation (<95)

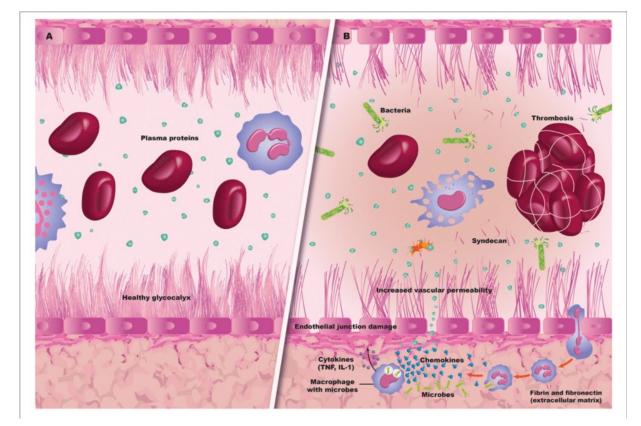
Conduction

Convection

Physiologic Response to Heat Stress

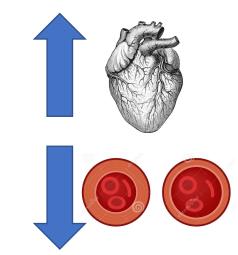
Involuntary

Voluntary/Behavioral



Pathophysiology of heat injury

- Thermal regulation begins to fail when >40F
- Unable to maintain temperature homeostasis



Inflammatory cytokines

Poor organ perfusion

Models of Heat Injury

- Classic -> high environmental heat stress
- Exertional -> environmental + physical activity
- Confinement Hyperpyrexia -> high risk low ventilation environments

- Concurrent EtOH or drug use
 - EtOH -> diuresis
 - Opiates/Stimulants -> blunt heat adaptation
 - Stimulants/LSD/PCP -> increase metabolic rate

- Prescription medication use
 - Blood pressure Rx (B-blockers, CCBs)
 - Diuretics
 - Anti-nausea meds (Phenothiazines) -> interferes with heat response center of brain

- 1. Elderly
 - Blunted physiologic response to heat
 - Rx
 - Reduced mobility
- 2. Physically disabled persons
- 3. Children
 - Proportionally large TBSA
 - Smaller circulating plasma volume
 - Very young (<mobility)
- 4. Low socioeconomic status

- 5. "Ravers"
- 6. Regional (Southwestern US etc.)
- 7. Immigrants/Refugees
- 8. Poorly acclimatized
 - Around 1-3 weeks to acclimate

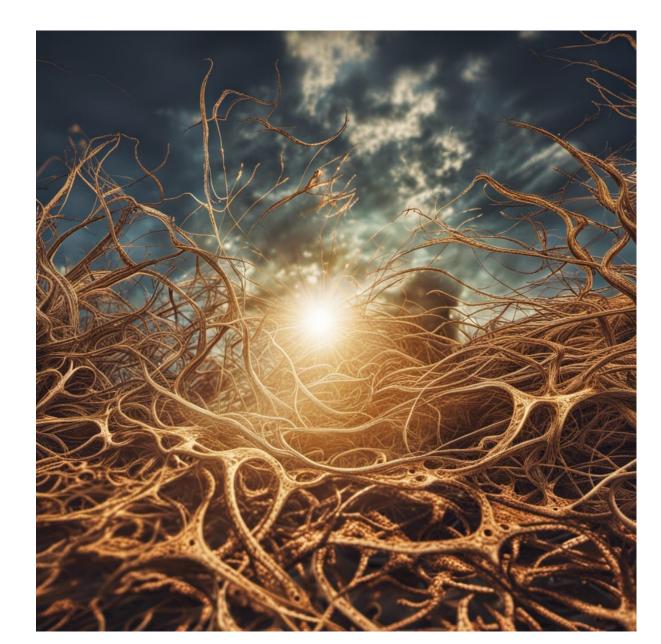
Introduction Summary

- Heat illness compromises a spectrum of disease from mild to life threatening
- Heat illness is the result of an overwhelmed physiologic cooling mechanism
- Heat stress can cause cellular damage and illicit a large inflammatory response similar to sepsis
- Heat injury is classically defined as non-exertional, exertional and confinement hyperpyrexia
- Persons with concurrent Rx use, recreational drug/EtOH use, lower socioeconomic status, and extremes of age are at higher risk

Outline

- Introduction
 - Definitions/Epidemiology
 - Heat physics (truncated)
 - Pathophysiology/Physiology
 - Classification (exertional, non-exertional/classic, confinement)
 - Special Populations
- Presentation/Physical Exam
- Approach to Initial Evaluation and Treatment
- Related Illness and Comorbid Conditions
- Disposition Decisions

Illness Severity


Heat Edema/Cramps

Heat Rash "Miliaria rubra"

Heat Syncope

Heat Exhaustion – "Heat Stress"

Heat Stroke

Outline

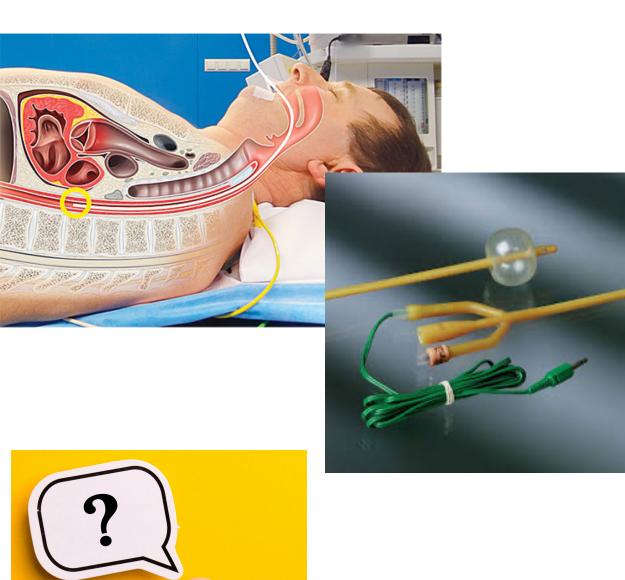
- Introduction
 - Definitions/Epidemiology
 - Heat physics (truncated)
 - Pathophysiology/Physiology
 - Classification (exertional, non-exertional/classic, confinement)
 - Special Populations
- Presentation/Physical Exam
- Approach to Initial Evaluation and Treatment
- Related Illness and Comorbid Conditions
- Disposition Decisions

Mitigating Risk: WBGT Index

						lemp	eratur	e in D	egrees	s Fahr	enhei	t					
		68.0	71.6	75.2	78.8	82.4	86.0	89.6	93.2	96.8	100.4	104.0	107.6	111.2	114.8	118.4	122.0
	0	58.6	60.9	64.3	65.5	67.7	69.9	72.1	74.3	76.4	78.5	80.6	82.6	84.7	86.6	88.6	90.5
	5	59.6	62.1	65.6	67.0	69.3	71.7	74.0	76.4	78.6	80.9	83.1	85.3	87.5	89.9	92.1	94.2
	10	60.7	63.3	66.9	68.4	70.8	73.3	75.8	78.2	80.7	83.0	85.5	88.0	90.3	92.8	95.1	97.6
	15	61.7	64.5	68.1	69.6	72.2	74.8	77.4	80.0	82.6	85.2	87.8	90.2	92.8	95.4	98.0	
	20	62.7	65.6	69.4	70.9	73.6	76.3	79.2	81.8	84.5	87.1	89.8	92.5	95.2	97.8		
	25	63.8	66.7	70.5	72.2	75.1	77.8	80.6	83.4	86.2	89.0	91.8	94.6	97.4			
	30	64.8	67.6	71.7	73.4	76.3	79.2	82.1	84.9	87.8	90.8	93.6	96.6	99.4			
Relative	35	65.6	68.6	72.7	74.6	77.5	80.5	83.5	86.4	89.4	92.4	95.3	98.3				
	40	66.7	69.6	73.8	75.7	78.8	81.8	84.8	87.8	90.9	94.0	97.0					
	45	67.5	70.6	74.8	76.8	79.9	83.0	86.1	89.2	92.3	95.4	98.6					
	50	68.4	71.5	75.8	77.8	81.1	84.1	87.4	90.5	93.7	96.9						
lum	55	69.3	72.4	76.7	78.8	82.1	85.3	88.5	91.9	95.1	98.3						
Humidity	60	70.1	73.3	77.7	79.8	83.2	86.4	89.8	93.1	96.3	99.6						
	65	70.9	73.8	78.6	80.9	84.2	87.5	90.8	94.1	97.5	98.6 Table 4. Wet Buib Globe Temperature						
(%)	70	71.7	75.0	79.5	81.7	84.9	88.6	91.9	95.3	98.6							
	75	72.4	75.9	80.3	82.7	86.1	89.6	92.9	96.4		WBG	T Categ	jory	A	CSM G	ideline	
	80	73.2	76.7	81.2	83.6	87.1	90.4	93.9	97.4		1 (wh	ite flag)		<	50°F (1	0°C)	

 Table 4. Wet Bulb Globe Temperature Categories And Recommended Activity Levels

WBGT Category	ACSM Guideline	US Military Guideline	Risk Level And Recommendations
1 (white flag)	< 50°F (10°C)	78°F-81.9°F (25.6°C-27.7°C)	Very low risk. Use caution and preventive measures during physical activity.
2 (green flag)	< 65°F (18.3°C)	82°F-84.9°F (27.8°C-29.4°C)	Low risk. Use caution and preventive measures during physical activity.
3 (yellow flag)	65°-73°F (18.3°-22.8°C)	85°F-87.9°F (29.4°C-31.1°C)	Moderate risk. Curtail strenuous outdoor activity for all persons not acclimatized.
4 (red flag)	73°-82°F (22.8°-27.8°C)	88°F-89.9°F (31.1°C-32.2°C)	High risk. Use extreme caution and preventive measures during physical activity.
5 (black flag)	> 82°F (27.8°C)	> 90°F (32.2°C)	Extreme risk. Restrict physical activity to air-condi- tioned or climate-controlled environments.


Abbreviations: ACSM, American College of Sports Medicine; WBGT, wet bulb globe temperature.

Initial Evaluation - Arrival

- Establish scene safety
- Collateral information/history
- Address immediate life threats
 - ABCs*
 - Exposure full body survey
- Consider relocation
 - Cooler/Dryer environment
 - Shaded

Secondary evaluation

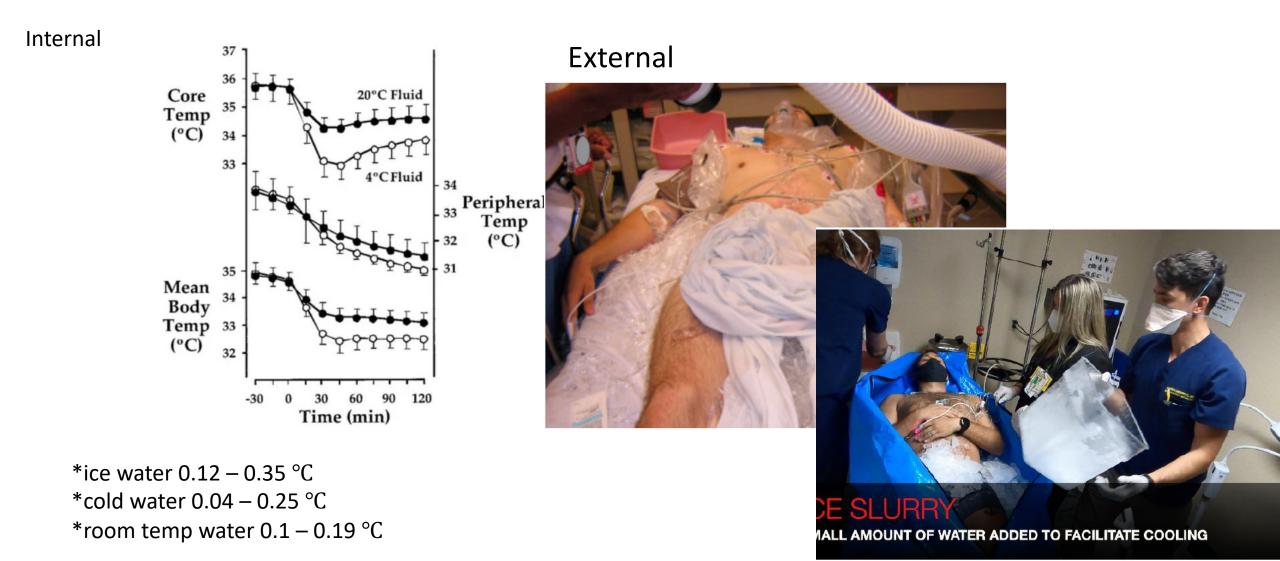
- Temperature
- Core = rectal, bladder or esophageal
 - External = oral, axillary, skin and tympanic
- External temps are often cooler
- External temp does not match well with core

So what thermometer should we use!?

• External temp – for trends and use until a core temp can be obtained

Treatment

- Prognosis worsens with time when core >40.5C
- Rapid cooling is the mainstay of treatment*
- "Cool first, transport second"
- Target <39C (38.5C common endpoint)


Treatment – Evaporation/Radiation

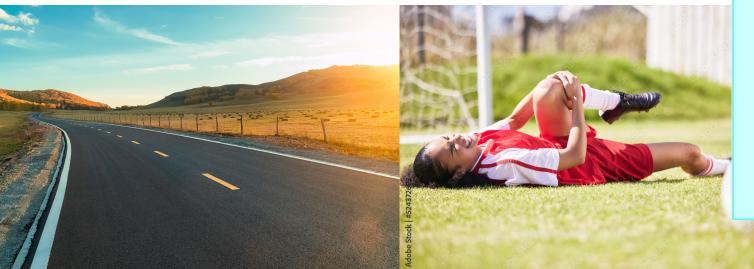
*0.05-0.1 °C/min

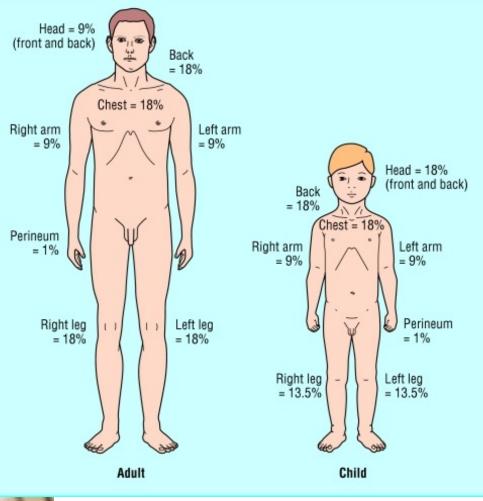
Treatment - Conduction

Outline

- Introduction
 - Definitions/Epidemiology
 - Heat physics (truncated)
 - Pathophysiology/Physiology
 - Classification (exertional, non-exertional/classic, confinement)
 - Special Populations
- Presentation/Physical Exam
- Approach to Initial Evaluation and Treatment
- Related Illness and Comorbid Conditions
- Disposition Decisions

Related Illness and Injury

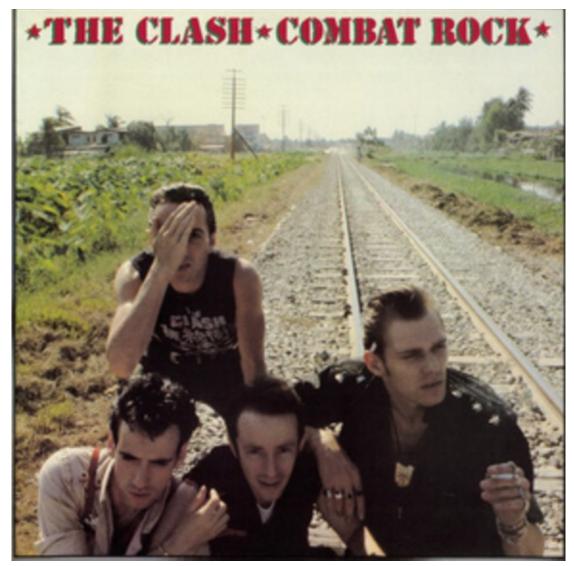

- Consider the broad diagnosis for heat stroke
- History and physical are key
- Treat while gathering information


Table 2. Differential Diagnosis InHyperthermia^{1,2,4-6}

Origin/Cause	Diagnosis					
Endocrine	Pheochromocytoma					
	Thyroid storm					
Infectious (including	Brain abscess					
central nervous	Encephalitis					
system)	• Malaria					
	Meningitis					
	Sepsis					
	Tetanus					
	Typhoid fever					
Neurologic	Cerebrovascular accident					
	Status epilepticus/seizures					
Toxicological	Alcohol withdrawal (delirium tremens)					
	 Anticholinergic toxidromes 					
	Aspirin overdose					
	Complex drug interactions (PCP, heroin,					
	MDMA, cocaine, amphetamines)					
	Malignant hyperthermia					
	MAO inhibitors					
	 Neuroleptic malignant syndrome 					
	Serotonin syndrome					

Related Injury - Burns and Trauma

- Trauma = poor mobility
- Poor mobility in a hot environment
 - Contact burns
 - Severe sun/radiation burn



Outline

- Introduction
 - Definitions/Epidemiology
 - Heat physics (truncated)
 - Pathophysiology/Physiology
 - Classification (exertional, non-exertional/classic, confinement)
 - Special Populations
- Presentation/Physical Exam
- Approach to Initial Evaluation and Treatment
- Related Illness and Comorbid Conditions
- Disposition Decisions

Disposition Decisions

- "Cool first, transport second"
- Patient stability is paramount
 - Cardiovascular stability
 - Evidence of end organ dysfunction
- Distance from receiving center
- Ability to cool in transport
- Receiving center?
 - Suspected etiology

Copyright CBS, Epic Records, Pennie Smith

References

- Bouchama A, Dehbi M, Chaves-Carballo E. Cooling and hemodynamic management in heatstroke: practical recommendations. 1. Crit Care 2007;11(3):R54-R54
- Casa DJ, Armstrong LE, Ganio MS, et al. Exertional heat stroke in competitive athletes. *Curr Sports Med Rep*. 2005;4(6):309-317. Clements JM, Casa DJ, Knight J, et al. Ice-water immersion and cold-water immersion provide similar cooling rates 2.
- 3. in runners with exercise-induced hyperthermia. J Athl Train. 2002;37(2):146-150.
- Epstein Y, Yanovich R. Heatstroke (Review). N Engl J Med 2019; 380:2449-2459. **4**.
- 5. Proulx CI, Ducharme MB, Kenny GP. Effect of water temper- ature on cooling efficiency during hyperthermia in humans. *J Appl Physiol* (1985). 2003;94(4):1317-1323.
- Lemire BB, Gagnon D, Jay O, et al. Differences between sexes in rectal cooling rates after exercise-induced 6. hyperthermia. *Med Sci Sports Exerc.* 2009;41(8):1633-1639.
- Pryor RR, Seitz JR, Morley J, et al. Estimating core temperature with external devices after exertional heat stress in thermal 7. protective clothing. Prehosp Emerg Care. 2012;16(1):136-141.
- Rajek A, Greif R, Sessler DI, Baumgardner J, Laciny S, Bastanmehr H. Core cooling by central venous infusion of ice-cold (4 8. degrees C and 20 degrees C) fluid: isolation of core and peripheral thermal compartments. Anesthesiology. 2000 Sep;93(3):629-37. doi: 10.1097/00000542-200009000-00010. PMID: 10969294.
- 9. Santelli J, Sullivan JM, Czarnik A, Bedolla J. Heat illness in the emergency department: keeping your cool. Emerg Med Pract. 2014 Aug;16(8):1-21; quiz 21-2. PMID: 25422847.
- Tintinalli J.E., & Stapczynski J, & Ma O, & Yealy D.M., & Meckler G.D., & Cline D.M.(Eds.), (2016). *Tintinalli's Emergency* 10. Medicine: A Comprehensive Study Guide, 8e. McGraw Hill.