

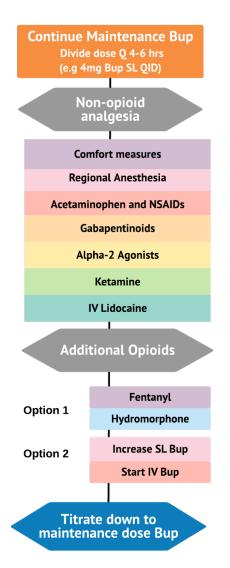
Use the column on the left as a guide.

Always consider, as applicable:

- Standard non-opioid treatment, including:
 - Ice, immobilization, and relaxation techniques as appropriate
 - Acetaminophen and NSAIDS
- Alternatives To Opioids ("ALTO"), such as:
 - Trigger point injections
 - Lidocaine IV and lidocaine patches
 - Gabapentinoids
 - Regional nerve blocks (e.g. for rib fractures)
 - Hematoma blocks

Continuing with the column on the left:

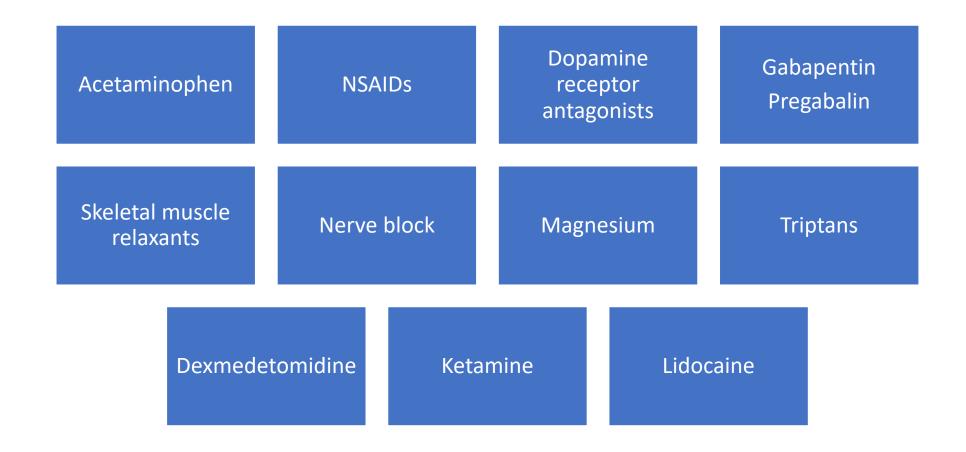
More advanced regional nerve blocks:

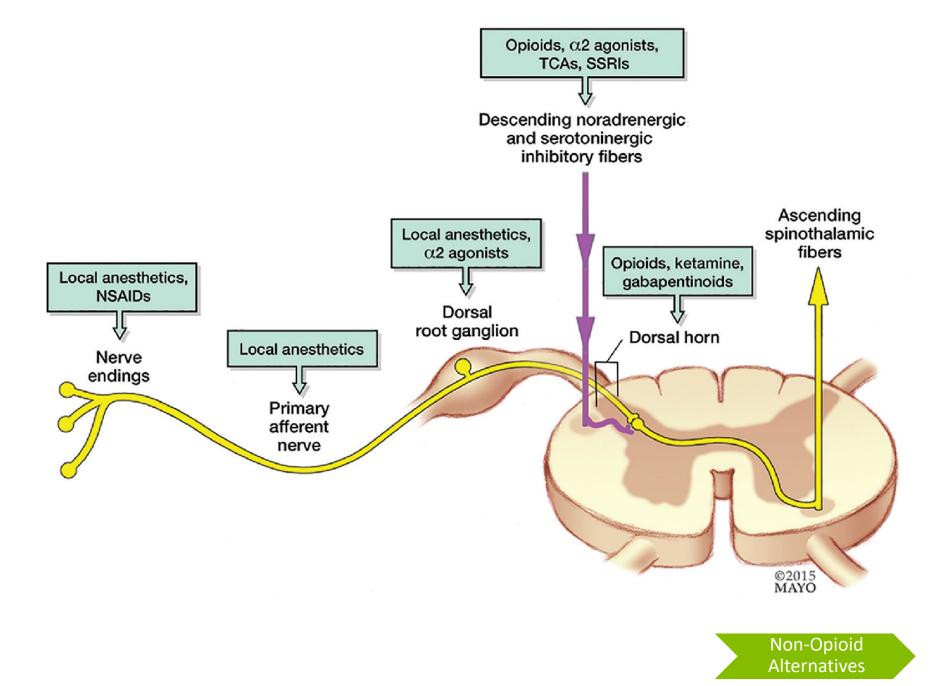

- Serratus Anterior plane block
- Femoral nerve block
- Fascia Iliaca block

Sub-dissociative ketamine IV push doses Continuous IV infusions (drips)

Alpha-2 Adrenoceptor agonists:

- Clonidine
- Dexmedetomidine


Khalil A, 2017 Khan Z, 1999


Mastering non-opioid techniques of pain management is particularly important in patients on MOUD

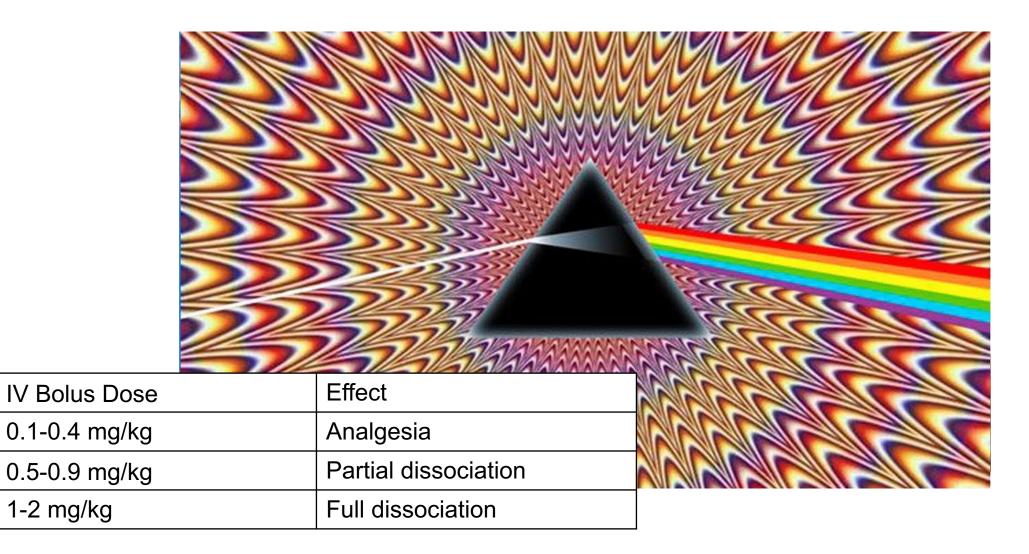
- Patients on MOUD have a high opioid tolerance
- Naltrexone has a very high mu receptor binding affinity - pain difficult to treat with most opioids
- Buprenorphine has a high binding affinity requires strategy with applying additional opioids
- Methadone is long half-life full mu agonist

Non-Opioid Alternatives

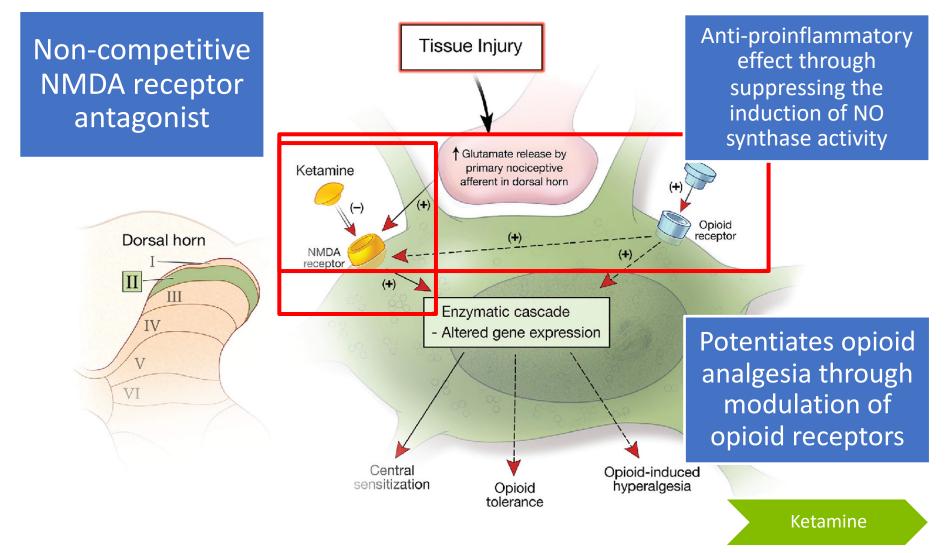
Non-Opioid Alternatives

A. Gorlin et al. J Anaesthesiol Clin Pharmacol 32.2 (2016) 160

Effect of a Single Dose of Oral Opioid and Nonopioid Analgesics on Acute Extremity Pain in the Emergency Department A Randomized Clinical Trial


Andrew K. Chang, MD, MS; Polly E. Bijur, PhD; David Esses, MD; Douglas P. Barnaby, MD, MS; Jesse Baer, MD

Objective	To compare the efficacy of 4 oral analgesics		
Study Design (n = 416)	Randomized controlled trial		
Interventions 1. 400 mg of ibuprofen and 1000 mg of acetaminoph 2. 5 mg of oxycodone and 325 mg of acetaminoph 3. 5 mg of hydrocodone and 300 mg of acetaminopher 4. 30 mg of codeine and 300 mg of acetaminopher			
Results No significant differences in pain reduction at 2 hou between groups (4.3 vs. 4.4 vs. 3.5 vs. 3.9)			



Ketamine

1-2 mg/kg

Mechanism of Action

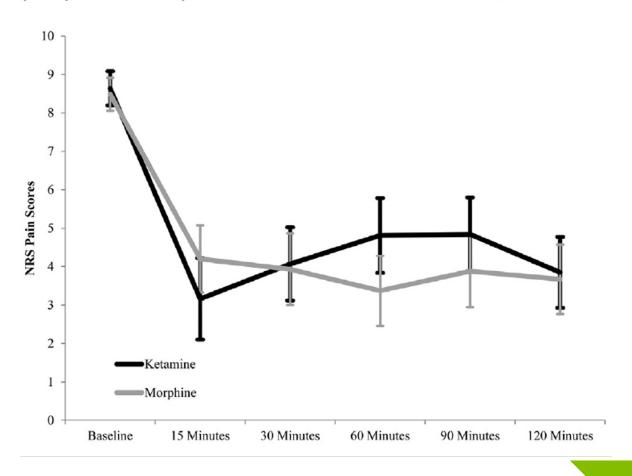
A. Gorlin et al. J Anaesthesiol Clin Pharmacol. 32.2 (2016) 160

Sergey Motov, MD*; Bradley Rockoff, MD; Victor Cohen, PharmD; Illya Pushkar, MPH; Antonios Likourezos, MA, MPH; Courtney McKay, PharmD; Emil Soleyman-Zomalan, MD; Peter Homel, PhD; Victoria Terentiev, BA; Christian Fromm, MD

Objective	To assess and compare the analgesic efficacy and safety of subdissociative IV ketamine with morphine		
Study Design (n = 90)	Randomized controlled trial		
Interventions	 Ketamine 0.3 mg/kg IV push in 10 mL NS Morphine 0.1 mg/kg IV push in 10 mL NS 		
Outcomes	Primary: Reduction in numeric rating scale pain scores at 30 minutes Secondary: Need for rescue analgesia at 30 and 60 minutes		

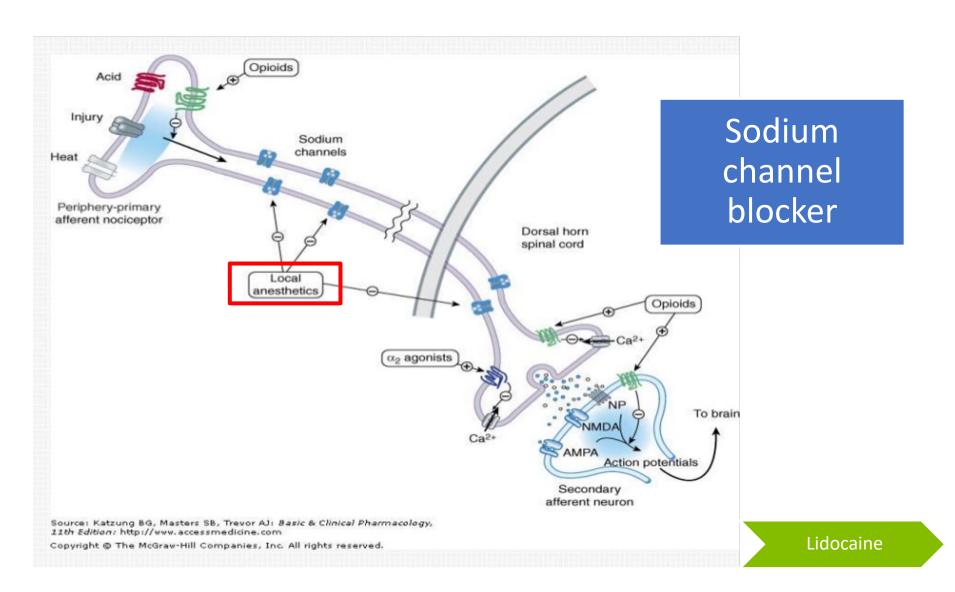
Sergey Motov, MD*; Bradley Rockoff, MD; Victor Cohen, PharmD; Illya Pushkar, MPH; Antonios Likourezos, MA, MPH; Courtney McKay, PharmD; Emil Soleyman-Zomalan, MD; Peter Homel, PhD; Victoria Terentiev, BA; Christian Fromm, MD

Inclusion Criteria	 18 to 55 years old Presents with acute (onset within 7 days) abdominal, flank, back, or musculoskeletal pain score of 5 or more
Exclusion Criteria	 Pregnant Altered mental status Weight < 46 kg or > 115 kg Unstable vitals History of hepatic or renal insufficiency


Sergey Motov, MD*; Bradley Rockoff, MD; Victor Cohen, PharmD; Illya Pushkar, MPH; Antonios Likourezos, MA, MPH; Courtney McKay, PharmD; Emil Soleyman-Zomalan, MD; Peter Homel, PhD; Victoria Terentiev, BA; Christian Fromm, MD

	Gro			
Characteristics	Ketamine	Morphine	Difference (95% CI	
No. of patients	45	45		
Age, mean (SD), y	35 (9.5)	36 (10.5)	-1 (-5.1 to 3.3)	
Sex				
Female, No. (%)	30 (67)	28 (62)	5 (-16 to 25)	
Weight, mean (SD), kg	74 (15.9)	78 (16.6)	-4 (-11.4 to 2.2)	
Blood pressure, mean (S	D), mm Hg			
Systolic	125 (18.2)	127 (16.1)	-2 (-8.8 to 5.6)	
Diastolic	76 (13.2)	74 (12.7)	2(-3.6 to 7.3)	
Pulse rate, beats/min	79 (14.8)	79 (15.0)	0 (-6.8 to 5.6)	
Source of pain, No. (%)				
Abdominal	33 (73)	31 (69)	4 (-15 to 24)	
Flank	7 (16)	9 (20)	-4 (-21 to 12)	
Other*	5 (11)	5 (11)	0 (-13 to 13)	
*Other pain sources include back and musculoskeletal pain.				

Sergey Motov, MD*; Bradley Rockoff, MD; Victor Cohen, PharmD; Illya Pushkar, MPH; Antonios Likourezos, MA, MPH; Courtney McKay, PharmD; Emil Soleyman-Zomalan, MD; Peter Homel, PhD; Victoria Terentiev, BA; Christian Fromm, MD


Time	Group		
Interval*	Ketamine	Morphine	Difference (95% CI)
Pain NRS, mean (SD)			
Baseline	8.6 (1.5)	8.5 (1.5)	0.1 (-0.46 to 0.77)
15	3.2 (3.5)	4.2 (2.9)	-1.0 (-2.40 to 0.31)
30	4.1 (3.2)	3.9 (3.1)	0.2 (-1.19 to 1.46) [†]
60	4.8 (3.2)	3.4 (3.0)	1.4 (0.13 to 2.75)
90	4.8 (3.1)	3.9 (3.1)	0.9 (-0.37 to 2.28)
120	3.9 (2.9)	3.7 (2.9)	0.2 (-1.09 to 1.46)

Sergey Motov, MD*; Bradley Rockoff, MD; Victor Cohen, PharmD; Illya Pushkar, MPH; Antonios Likourezos, MA, MPH; Courtney McKay, PharmD; Emil Soleyman-Zomalan, MD; Peter Homel, PhD; Victoria Terentiev, BA; Christian Fromm, MD

Mechanism of Action

Effectiveness of intravenous lidocaine versus intravenous morphine for patients with renal colic in the emergency department

Hassan Soleimanpour^{1*}, Kamaleddin Hassanzadeh², Hassan Vaezi¹, Samad EJ Golzari^{3,4}, Robab Mehdizadeh Esfanjani⁵ and Maryam Soleimanpour⁶

Objective	To compare the efficacy of IV lidocaine with IV morphine for pain management in patients with renal colic		
Study Design (n = 240)	Randomized controlled trial		
Interventions	 Lidocaine 1.5 mg/kg IV push in 10 mL NS (Group 1) Morphine 0.1 mg/kg IV push in 10 mL NS (Group 2) 		
Primary Outcome	Reduction in numeric rating scale pain scores at 5, 10, 15 and 30 minutes		

Effectiveness of intravenous lidocaine versus intravenous morphine for patients with renal colic in the emergency department

Hassan Soleimanpour^{1*}, Kamaleddin Hassanzadeh², Hassan Vaezi¹, Samad EJ Golzari^{3,4}, Robab Mehdizadeh Esfanjani⁵ and Maryam Soleimanpour⁶

	Group I	Group II	<i>P</i> -value
primary VAS	9.65 ± 0.88	9.74 ± 0.63	0.365
VAS ₅	3.18 ± 2.27	4.45 ± 2.16	0.0001
VAS ₁₀	1.83 ± 1.59	2.89 ± 2.07	0.0001
VAS ₁₅	1.37 ± 1.32	2.55 ± 1.52	0.0001
VAS ₃₀	1.13 ± 1.15	2.23 ± 1.57	0.0001

Effectiveness of intravenous lidocaine versus intravenous morphine for patients with renal colic in the emergency department

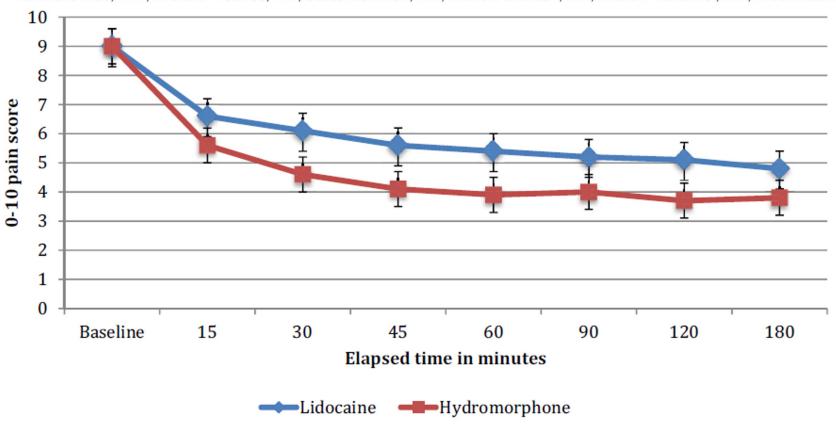
Hassan Soleimanpour^{1*}, Kamaleddin Hassanzadeh², Hassan Vaezi¹, Samad EJ Golzari^{3,4}, Robab Mehdizadeh Esfanjani⁵ and Maryam Soleimanpour⁶

Group I	perioral numbness	3 (2.5 %)
	transient dizziness	10 (8.3 %)
	dysrathria	2 (1.7 %)
	Without side effect	105 (87.5 %)
Group II	hypotension	3 (2.5 %)
	vertigo	2 (1.7 %)
	nausea	9 (7.5 %)
	vomiting	2 (1.6 %)
	Without side effect	104 (86.7 %)

Randomized Trial of Intravenous Lidocaine Versus Hydromorphone for Acute Abdominal Pain in the Emergency Department

Elliott Chinn, DO; Benjamin W. Friedman, MD, MS*; Farnia Naeem, BS; Eddie Irizarry, MD; Freda Afrifa, PharmD; Eleftheria Zias, RPh; Michael P. Jones, MD; Scott Pearlman, MD; Andrew Chertoff, MD; Andrew Wollowitz, MD; E. John Gallagher, MD

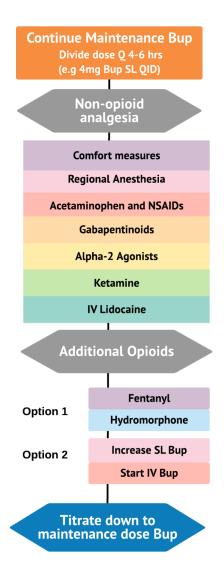
Objective	To compare the efficacy and safety of IV lidocaine with IV hydromorphone for the treatment of acute abdominal pain in the ED		
Study Design (n = 154)	Randomized controlled trial		
Interventions	 1. 120 mg IV lidocaine infused over 10 minutes 2. 1 mg IV hydromorphone infused over 10 minutes Patients could receive additional dose at 30 minutes inadequate pain relief 		
Results	Reduction in numeric rating pain scale at 15, 30, 45, 60, 90, 120 and 180 minutes was larger with hydromorphon compared to lidocaine		


Randomized Trial of Intravenous Lidocaine Versus Hydromorphone for Acute Abdominal Pain in the Emergency Department

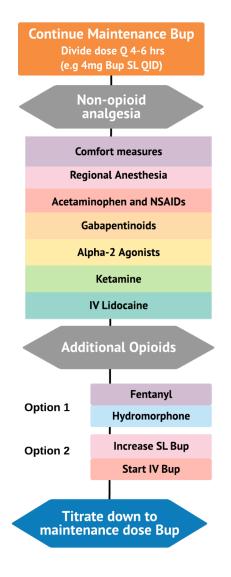
Elliott Chinn, DO; Benjamin W. Friedman, MD, MS*; Farnia Naeem, BS; Eddie Irizarry, MD; Freda Afrifa, PharmD; Eleftheria Zias, RPh; Michael P. Jones, MD; Scott Pearlman, MD; Andrew Chertoff, MD; Andrew Wollowitz, MD; E. John Gallagher, MD

Time, Minutes	Lidocaine (n = 77)	Hydromorphone (n=77)	Difference (95% CI)
Baseline	9.0 (1.3)	9.0 (1.2)	0.0 (-0.4 to 0.4)
15	6.6 (2.4)	5.6 (2.6)	1.0 (0.2 to 1.8)
30	6.1 (2.8)	4.6 (2.8)	1.5 (0.6 to 2.4)
45	5.6 (3.0)	4.1 (2.7)	1.5 (0.6 to 2.4)
60	5.4 (3.0)	3.9 (2.8)	1.5 (0.5 to 2.4)
90	5.2 (3.1)	4.0 (2.9)	1.2 (0.3 to 2.2)
120	5.1 (3.2)	3.7 (2.8)	1.4 (0.4 to 2.3)
180	4.8 (2.8)	3.8 (2.9)	1.0 (0.1 to 2.0)

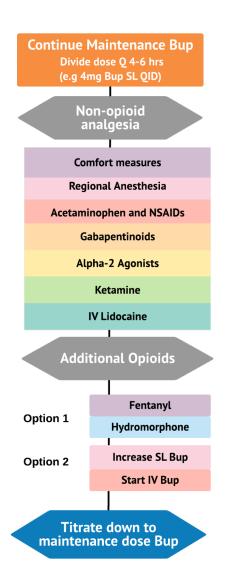
Randomized Trial of Intravenous Lidocaine Versus Hydromorphone for Acute Abdominal Pain in the Emergency Department


Elliott Chinn, DO; Benjamin W. Friedman, MD, MS*; Farnia Naeem, BS; Eddie Irizarry, MD; Freda Afrifa, PharmD; Eleftheria Zias, RPh; Michael P. Jones, MD; Scott Pearlman, MD; Andrew Chertoff, MD; Andrew Wollowitz, MD; E. John Gallagher, MD

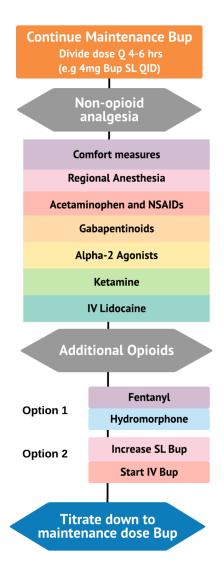
ED Acute Pain Management for Patients with OUD


Just as you would for patients without OUD -- consider the etiology of the acute pain

- If the condition should not usually be treated with opioids (and the patient is not actively in opioid withdrawal) then don't consider an opioid
 - Example: Migraine headache in patient with OUD on methadone or buprenorphine
 - Just as for patients who do not have OUD, migraine headaches should not be treated with opioids

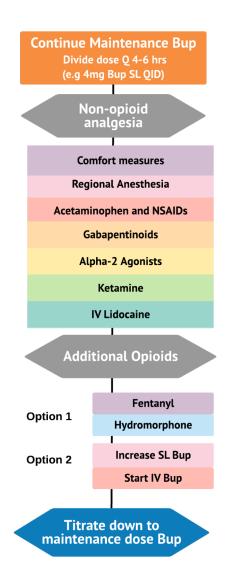

Acute pain management for patients on **naltrexone** (particularly depot IM naltrexone):

- Employ all non-opioid techniques
- When it comes necessary to add an opioid, select an opioid with <u>a high mu receptor</u> binding affinity:
 - Fentanyl: high affinity, titratable, shortacting (but still may need very high doses to overcome naltrexone
 - Hydromorphone: higher binding affinity than fentanyl, longer acting (and less titratable)
 - ? Buprenorphine ?


For patients on **Methadone**: Employ all non-opioid techniques.

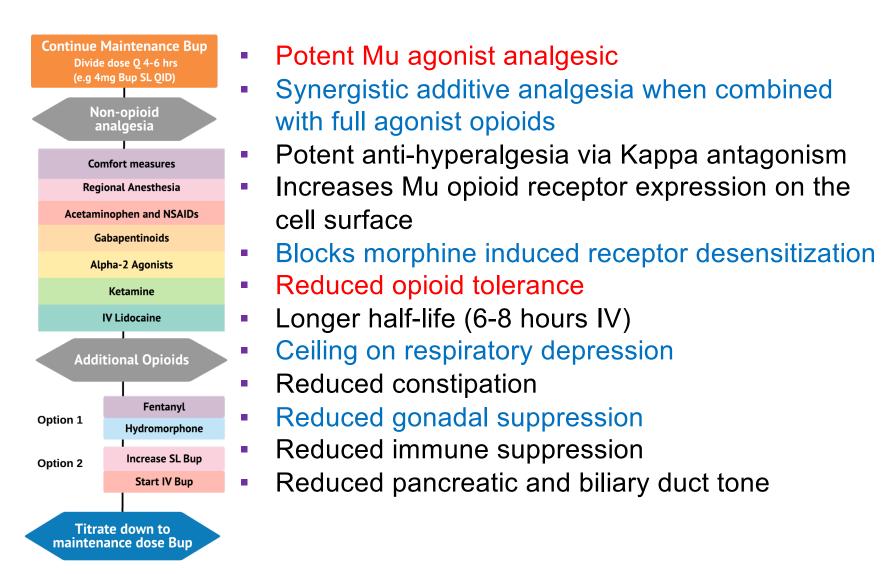
- Do NOT administer buprenorphine or butorphanol ("Stadol") – both are high affinity partial agonists – may precipitate withdrawal
- For sustained pain relief, to reduce the need for additional opioids, adjust/divide methadone dosing to TID or BID
 - Methadone has a short half-life as an analgesic (~ 8 hours)
- May add other full mu agonists (temporarily)
- May increase total daily methadone dose (gradually)
- May want to consult an expert

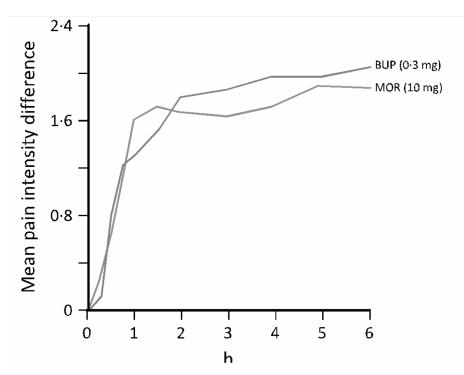
Acute pain management for patients on **buprenorphine**:


- Employ non-opioid techniques (as applicable)
- First adjust buprenorphine dosing intervals:
- Divide dose to TID or QID if on daily dosing:
 - e.g. adjust 12mg daily to 4mg TID
 - e.g. adjust 16mg daily to 4mg QID
- May increase the dose of buprenorphine temporarily (examples):
 - e.g. increase from 8mg BID to 8mg TID
 - May increase to even shorter intervals (particularly if in the hospital)
 - Consider IV buprenorphine

Acute pain management for patients on **buprenorphine**:

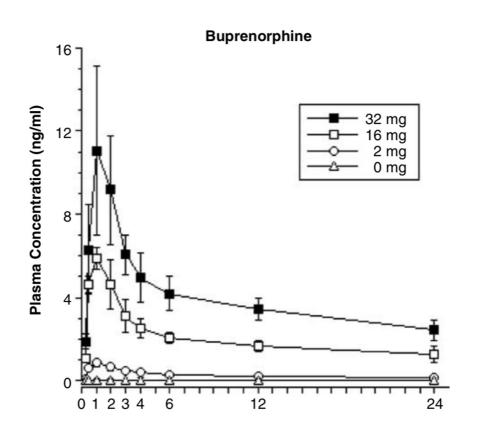
- Employ all non-opioid techniques.
- When it becomes necessary to add an opioid, as with naltrexone, select an opioid with <u>a high mu receptor binding affinity:</u>
 - Fentanyl: high affinity, titratable, shortacting (may need relatively high doses)
 - Dilaudid: higher binding affinity than fentanyl, longer acting (and less titratable)


Pre-op Acute Pain Management


- Current evidence does not support the practice of routinely discontinuing Buprenorphine before surgery
- Buprenorphine is a powerful analgesic that can be combined synergistically with other opioids
 - Buprenorphine onboard first, and maintained

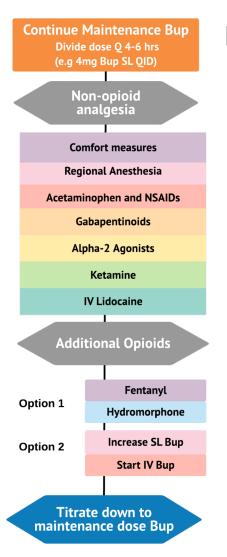
Harrison, T., 2018. Quaye, A., 2018 Lembke, A., 2018

Buprenorphine for Acute & Chronic Pain Management


Pain Dosed Buprenorphine

White, L., 2018 Raffa, R., 2014.

- Buprenorphine is **30 to 40 times** more potent than morphine
- Clinically significant analgesia begins at 5-10% receptor occupancy
- Analgesic effect seen over the 0.1 to 10 mg range IV
- Reduced Side effects:
 - Hypotension
 - Respiratory depression
 - Sedation
 - Pruritis


Pain Dosed Buprenorphine

Greenwald, M. 2003

- Increased frequency of dosing
- Buprenorphine's analgesic duration is only a few hours
- Increased total dose
 - No clinical ceiling on analgesic effect

Acute Pain Management in Buprenorphine Maintained Patients

Recap:

- Use multimodal analgesia:
 - Regional anesthesia
 - Acetaminophen, NSAIDs
 - Ketamine, Magnesium Alpha-2 Agonists—clonidine
 - Gabapentinoids
 - IV lidocaine

- May first divide current dose of buprenorphine into more frequent small supplemental doses of sublingual buprenorphine - Buprenorphine's analgesic duration is only a few hours
- May also increase the total daily dose of buprenorphine
- Combine high affinity (fentanyl or hydromorphone) full agonist therapy with maintenance Buprenorphine

Perioperative Management

General:

- Patients fear mistreatment,
 Providers fear deception
- Lack of consensus in the field

 often based on the
 preference of the surgical/

 anesthesia teams

• Pre-Op:

- Confirm Multi-Party Consent and Coordination of care with providers
- In general buprenorphine should not be discontinued. Some clinicians may lower the dose to 8-16mg SL per day in divided doses during the perioperative period

Chronic Pain Patients

- Consider consulting a pain medicine specialist
- Consider Multidisciplinary
 Team Approach
- Try non-opioid and adjuvant analgesics
- Consider non-pharmacologic therapies
- For patients maintained on chronic opioids, consider transition to buprenorphine:
 - Safer
 - Fewer adverse effects than other opioids

Summary

- Patients with OUD treated with naltrexone, buprenorphine, and methadone, each present different challenges and opportunities for acute pain management
- Emergency physicians should develop a competency with multiple forms of non-opioid acute pain management techniques, nerve blocks, and nonopioid forms of analgesia
- Peri-operative pain management practices for patients with OUD are variable and require close coordination with surgical team
- Patients on buprenorphine can be maintained on buprenorphine through acute pain management, including peri-operative management