

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

COVID and the Heart

Leon Ptaszek, MD, PhD, FACC, FHRS

Cardiac Arrhythmia Service, Massachusetts General Hospital Assistant Professor of Medicine, Harvard Medical School

20 November 2023

Disclosures: Research grant from Anumana; Consultant for Abbott, Bristol-Myers Squibb, NeuTrace, WorldCare Clinical, Medtronic, Moderna, Pfizer

CORRIGAN MINEHAN HEART CENTER

#1: Better understand the physiology of COVID-19 infection.

#2: Identify the most common cardiac issues in patients hospitalized with COVID-19.

#3: Better understand the impact of heart disease on COVID-19 outcomes.

2

#1: Better understand the physiology of COVID-19 infection.

#2: Identify the most common cardiac issues in patients hospitalized with COVID-19.

#3: Better understand the impact of heart disease on COVID-19 outcomes.

3

<u>HPI:</u>

72-year-old man with paroxysmal AF with PVI in 2017 and subsequent recurrence, maintained on sotalol. Reports productive cough, dyspnea, and diarrhea starting on 1/10/2021. Admitted to MGH 1/14/21.

<u> PMH:</u>

- PAF, PVI in 2017 with subsequent recurrence and initiation of sotalol
- Bicuspid aortic valve

<u>Vital signs:</u>

T = 36.4C BP = 116/80mmHg HR = 95 bpm RR= 28 SpO2 = 100% NRB

Physical Exam:

- General: Patient is awake and alert. Patient is oriented x3. Patient is nontoxic appearing.
- Head: The head is normocephalic and atraumatic.
- Eyes: The pupils are equal sized and reactive to light. The extraocular muscles are intact.
- ENT: Patient's airway is intact.
- Neck: Supple. Full ROM.
- Chest/Respiratory: Respiratory effort is increased. Inspiratory wheezes appreciated.
- Cardiovascular: The heart sounds have a normal S1/S2. The heart has a regular rate and rhythm.
- GI/Abdomen: Abdomen is soft. The abdomen is nontender and nondistended.
- Musculoskeletal: Patient does not have edema. Full range of motion of all extremities. Skin: The patient's skin is intact.

Neurologic: The neurological exam shows no focal deficits.

Labs at admission:

- NTproBNP 2,444 (↑)
- hs-TnT 15 (↑)
- D-dimer 5,614 (↑)

Otherwise unremarkable

TTE:

LVEF 50%

Bicuspid aortic valve, mild aortic insufficiency, aortic root size normal

> CORRIGAN MINEHAN Heart Center

Initial Treatment:

Dexamethasone: started at admit, 7-day course¹

Remdesivir: started day after admit, 4-day course²

Supplemental O2 administered via NC (4L/min), O2 sats >95%

1. The RECOVERY Collaborative Group, NEJM 2020; 17 Jul: DOI: 10.1056/NEJMoa2021436

2. Beigel et al, NEJM 2020;383:1813-1826

ECG Performed on HD#4

ECG Performed on HD#4

ECG Performed on HD#4

30

Response to Treatment

- HD#1: moderate COVID symptoms were noted
 - Supplemental O2 administered via NC (4L/min) with Os sats maintained >95%
 - Normal work of breathing
- <u>HD#4:</u> Atrial fibrillation recurrence noted: rates initially well-controlled but within 24 hours of admission his heart rates increased
 - Sotalol discontinued due to AKI
 - Metoprolol administered for rate control
- <u>HD#5</u>: Presence of AF RVR associated with progressive decline
- <u>HD#7</u>: acute respiratory decompensation was noted: a Rapid Response was initiated and the patient was transferred to the Cardiac Step-Down Unit

Progressive Respiratory Decline

Admit CXR

HD#7 CXR

Initial SDU Treatment

At time of arrival:

- Decreased BP noted in the context of AF (130s/90s baseline -> 90s/60s in AF)
- Reduced O2 sats noted with increasing O2 requirement (91% on 6L NC)
- Increased work of breathing, worsening breath sounds

Amiodarone IV bolus administered:

- Change in rhythm was noted

HD#7 ECG

HD#8 ECG

SDU Treatment Summary

Amiodarone 150mg IV bolus with IV drip

- Remained in AFL initially with improved HR (110s-120s)
- Brief periods of sinus rhythm observed, but AFL was predominant
- Reduced O2 sats noted with increasing O2 requirement (91% on 6L NC)
- Increased work of breathing, worsening breath sounds
- Decreased BP noted in the context of AFL
 (120a/00a baseline > 00a/60a in AFL)

(130s/90s baseline -> 90s/60s in AFL)

- Repeat amiodarone IV bolus administered
 - Sinus rhythm restored
 - Hypotension resolved and diuresis was successful
 - Oxygen requirement decreased (on room air within 48 hours)

Clinical Improvement in Sinus Rhythm

HD#7 CXR

HD#10 CXR

Pathophysiology of SARS-CoV-2

Ehre C NEJM 2020: DOI 10.1056/NEJMicrm2023328

Virus infection leads to "leaky" respiratory and vascular endothelial cells

Wiersinga W et al JAMA 2020;32:782-793

#1: Better understand the physiology of COVID-19 infection.

#2: Identify the most common cardiac issues in patients hospitalized with COVID-19.

#3: Better understand the impact of heart disease on COVID-19 outcomes.

Which of the following cardiac and pulmonary issues have been associated with COVID infection?

- A. Atrial fibrillation
- B. Ventricular tachycardia
- C. Myocarditis
- D. Pulmonary embolism
- E. All of the above

Which of the following cardiac and pulmonary issues have been associated with COVID infection?

- A. Atrial fibrillation
- B. Ventricular tachycardia
- C. Myocarditis
- D. Pulmonary embolism
- E. All of the above

Which of the following best describes the proportion of patients hospitalized with COVID who present with myocardial injury:

- A. 10%
- B. 25%
- **C**. 50%
- D. Greater than 50%

Which of the following best describes the proportion of patients hospitalized with COVID who present with myocardial injury:

- A. 10%
- B. 25%
- **C**. 50%
- D. Greater than 50%

Which of the following best describes the mortality rate for patients hospitalized with COVID who develop evidence of myocardial injury:

- A. 5%
- B. 10%
- **C**. 25%
- D. 35%

Which of the following best describes the mortality rate for patients hospitalized with COVID who develop evidence of myocardial injury:

- A. 5%
- B. 10%
- **C.** 25%
- D. 35%

Which of the following best describes the proportion of patients hospitalized with COVID who develop and atrial arrhythmia:

- A. 5%
- **B**. 10%
- **C**. 15%
- D. 20%

Which of the following best describes the proportion of patients hospitalized with COVID who develop and atrial arrhythmia:

- A. 5%
- **B**. 10%
- **C**. 15%
- D. 20%

Key Cardiac Issues in this Patient

- Myocardial injury/NSTEMI
- Atrial fibrillation/flutter
- Heart failure

Key Cardiac Issues in this Patient

- Myocardial injury/NSTEMI
- Atrial fibrillation/flutter
- Heart failure

Myocardial Injury is Common in COVID

62%

	Overall	Myocardial Injury	No Myocardial Injury	
	(N = 305)	(n = 190)	(n = 115)	p Value
Demographics				
Age, yrs	63 (53-73)	66 (56-74)	58 (47-70)	0.0008
Male	205/305 (67.2)	132 (69.5)	73 (63.5)	0.28
Race				
White	174/305 (57.1)	98 (51.6)	76 (66.1)	0.10
Black	43/305 (14.1)	30 (15.8)	13 (11.3)	
Asian	27/305 (8.9)	20 (10.5)	7 (6.1)	
Unknown	61/305 (20.0)	42 (22.1)	19 (16.5)	
Hispanic ethnicity	84/304 (27.6)	56 (29.5)	28 (24.6)	0.35
Body mass index, kg/m ²	28 (24.5-32.8)	29.1 (24.6-33.2)	26.5 (24.3-31.2)	0.13

Giustino G et al JACC 2020;76:2043-2055

* Patients with acute heart failure who were not categorized as having acute MI, Myocarditis, Takotsubo or abnormal echocardiographic findings.

** Patients in whom tachyarrhythmia was the only evidence of cardiac etiology.

*** Patients with echocardiographic abnormalities without another cardiac problem.

**** Patients with critical illness, respiratory failure or sepsis.

Khaloo et al, Int J Cardiol 2022

#1: Better understand the physiology of COVID-19 infection.

#2: Identify the most common cardiac issues in patients hospitalized with COVID-19.

#3: Better understand the impact of heart disease on COVID-19 outcomes.

Cardiac Injury in COVID Increases Mortality

All-Cause Mortality

Giustino G et al JACC 2020;76:2043-2055

Cardiac Injury in COVID Increases Mortality

All-Cause Mortality

Giustino G et al JACC 2020;76:2043-2055

Acute Myocardial Infarction in COVID

- Myocardial injury is common in COVID-19.
- The pattern of myocardial injury/infarction in COVID-19 can be distinct from typical acute coronary syndrome.

Typical STEMI: 44-year-old man with sudden-onset chest pain

Typical STEMI: 44-year-old man with sudden-onset chest pain

MASSACHUSETTS GENERAL HOSPITAL

HEART CENTER

CORRIGAN MINEHAN

ST Elevation: ≥ 0.1mV (1mm) in two adjoining leads, except V2, V3

In V2, V3: \geq 1.5mm in women \geq 2mm in men \geq 40 years \geq 2.5mm in men < 40 years

Typical STEMI: 44-year-old man with sudden-onset chest pain

Intervention for Typical STEMI

Intervention for Typical STEMI

Intervention for Typical STEMI

Single culprit lesion responsible for localized ST elevations

COVID-19 Leads to Inflammation of Vascular Endothelium

- SARS-CoV-2 infection leads to inflammation of the endothelial lining of veins and arteries.
- Endothelial dysfunction secondary to inflammation may contribute to the clinical manifestations of COVID-19.
- The result is <u>diffuse</u> inflammation and vascular endothelial dysfunction

MASSACHUSETTS GENERAL HOSPITAL CORRIGAN MINEHAN HEART CENTER

Acute Myocardial Infarction in COVID

Diffuse thrombosis and vessel occlusion: distribution of ST elevations may resemble myocarditis (Yerasi C et al, JACC:CI 2021)

MASSACHUSETTS GENERAL HOSPITAL CORRIGAN MINEHAN HEART CENTER

Vascular Inflammation in COVID is Associated with Disorders of Blood Clotting

Goshua G et al, Lancet Haematology 2020;7:e575-e582

Key Cardiac Issues in this Patient

- Myocardial injury/NSTEMI
- Atrial fibrillation/flutter
- Heart failure

Atrial Arrhythmias are Common in COVID-19

Peltzer B et al J Cardiovasc Electrophysiol 2020;31:3077-3085

Atrial Arrhythmias are Common in COVID-19

Association of atrial arrhythmias with 30-day all-cause mortality

	Event rates based on arrhythmia (%)					
Arrhythmia	Yes	No	Unadjusted OR (95% CI)	p Value	Adjusted OR (95% CI) ^a	p Value
Atrial fibrillation (AF)	37.7	12.8	4.12 (2.82-6.02)	<.001	2.16 (1.33-3.52)	.002
AFL	22.5	16.2	1.50 (0.70-3.22)	.293	0.65 (0.27-1.55)	.335
Any AF/AFL	35.5	12.9	3.74 (2.57–5.43)	<.001	1.93 (1.20-3.11)	.007
Newly detected AF/AFL	36.6	14.3	3.47 (2.23-5.41)	<.001	2.87 (1.74-4.74)	<.001
			Ļ			

Mortality rate increases 2- to 3-fold in the context of atrial arrhythmia.

Peltzer B et al J Cardiovasc Electrophysiol 2020;31:3077-3085

AF/AFL Associated with Myocardial Injury in COVID

Peltzer B et al J Cardiovasc Electrophysiol 2020;31:3077-3085

MASSACHUSETTS GENERAL HOSPITAL CORRIGAN MINEHAN HEART CENTER

Key Cardiac Issues in this Patient

- Myocardial injury/NSTEMI
- Atrial fibrillation/flutter
- Heart failure

HF increases the risk of COVID-related death

Alvarez-Garcia J et al, JACC 2020;76:2334-2348

Corrigan Minehan Heart Center

Objectives

#1: Better understand the physiology of COVID-19 infection.

- Diffuse endothelial inflammation
- Cardiac issues are common
- **#2:** Identify the most common cardiac issues in patients hospitalized with COVID-19.
 - Myocardial injury (myocarditis, acute MI)
 - Arrhythmias
 - Heart failure
- **#3:** Better understand the impact of heart disease on COVID-19 outcomes.
 - History of heart disease (especially CHF) increases the risk of mortality in patients with COVID.

GENERAL HOSPITAL Corrigan Minehan

HEART CENTER

- New, COVID-related heart issues also increase mortality

Thank you

en die des also die twee as

....

.

TREESCOLOUGE

11100

111