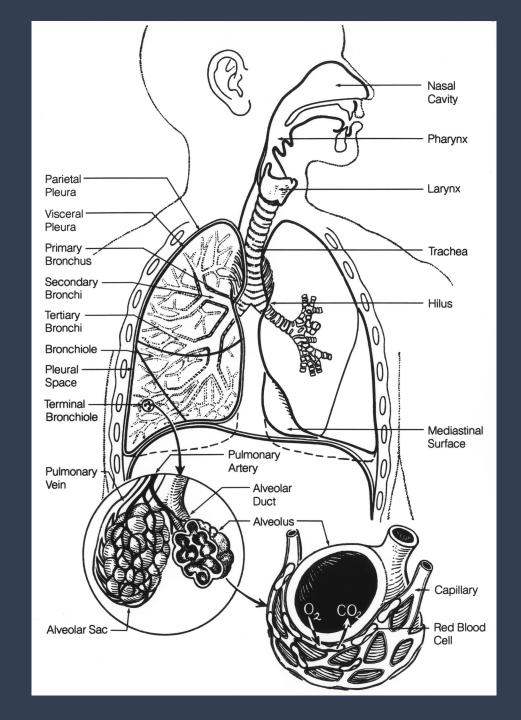
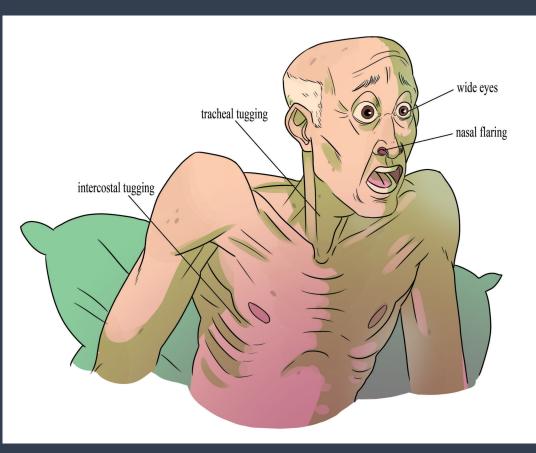
Chronic Lung Disease: COPD, Emphysema, PAH

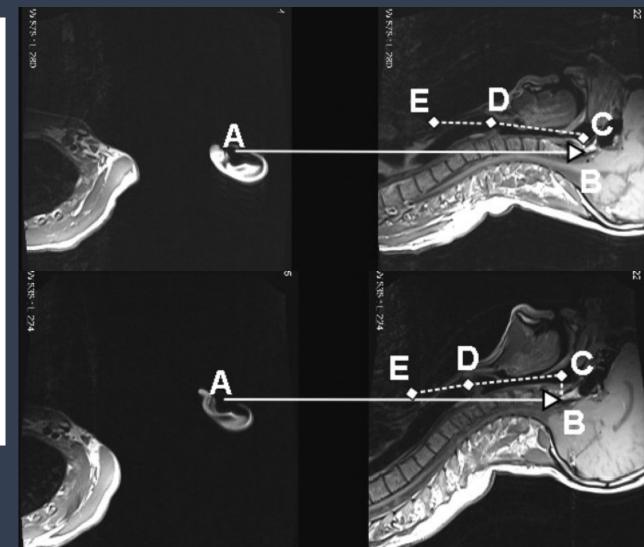
Michael T. Mozer, DO UNM EMS Fellow 03/21/2024

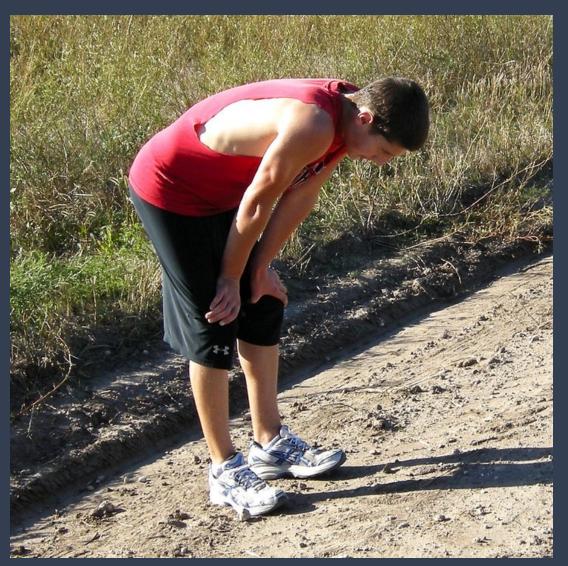

Disclosures

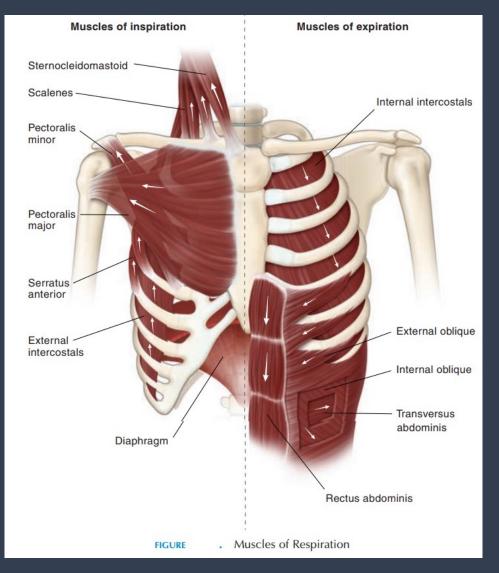
No financial disclosures



Outline


- Lung Anatomy/Physiology Review
- Pathophysiology of COPD
 - Emphysema
 - Chronic Bronchitis
- Prehospital Treatment approach to COPD
- Pathophysiology of Pulmonary Arterial Hypertension (PAH)
- Prehospital Treatment approach to PAH
- Summary/Takehome


Adult Respiratory Distress




https://opentextbc.ca/vitalsignmeasurement/chapter/respiration/ Image credit – Paige Jones

Adult Respiratory Distress

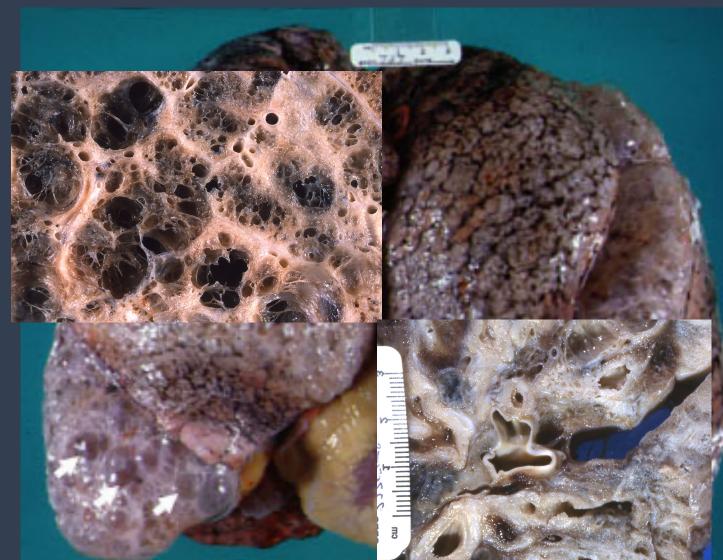
Chronic Obstructive Pulmonary Disease

- Inflammation/Scarring
- Usually effects older patients
- Periodic exacerbation
 - More persistent and insidious
- Often underlying alveolar injury
 - Decreased gas exchange in lungs
 - More persistent expansion/air trapping
 - Less functional ventilation

"Blue Bloater" and "Pink Puffer"

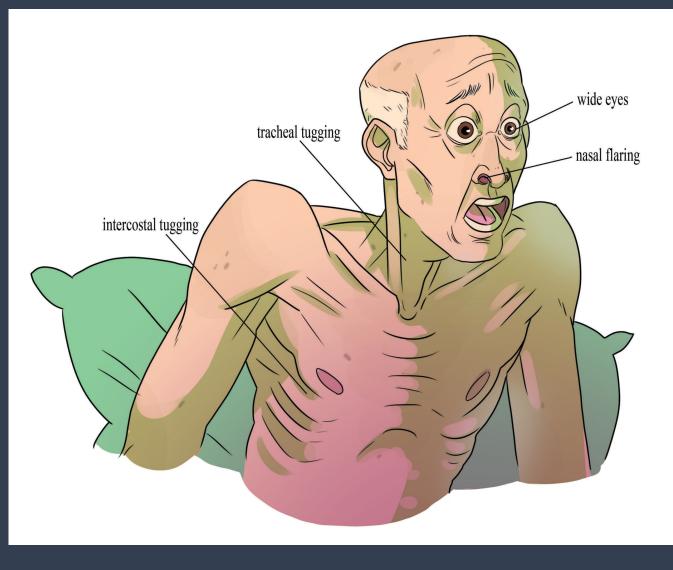
Blue Bloater = Chronic Bronchitis

- ✓ Increased sputum
- ✓ "Cor pulmonale"
 ✓ Crackles
 ✓ Wheezing
- ✓ Cyanosis
- Pneumonia


Pink Puffer = Emphysema

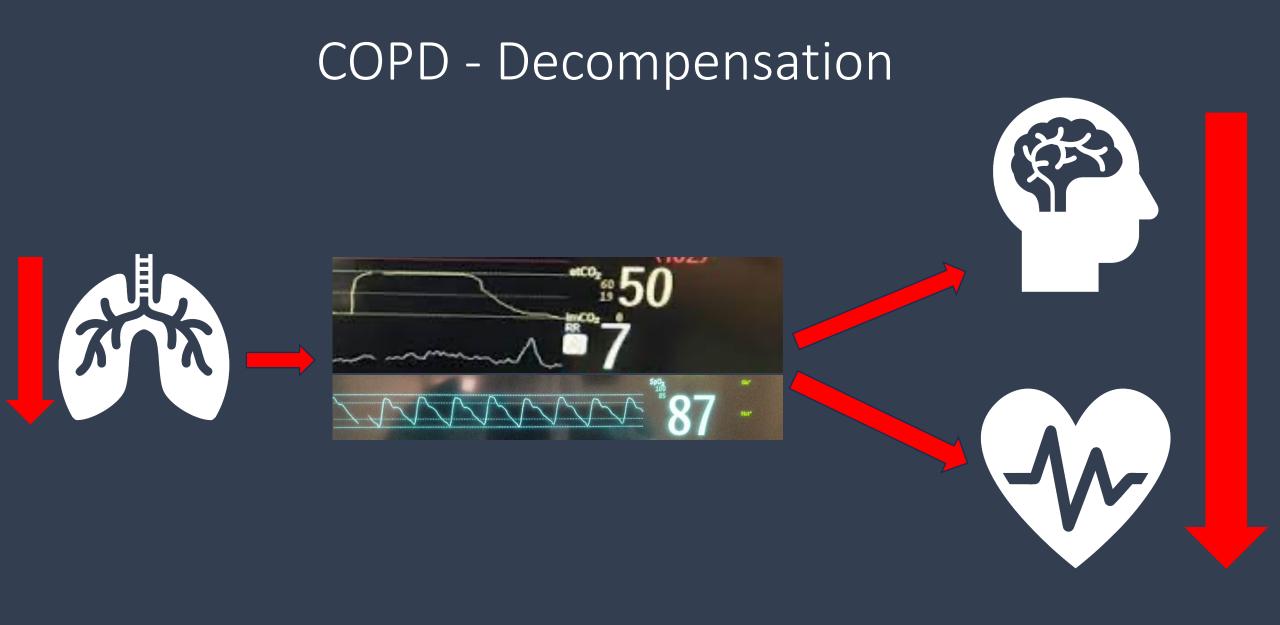
✓ Decreasedbreath sounds

- Pursed lip breathing
- ✓ Tachypnea
- ✓ Pneumothorax


COPD – Tissue Damage

COPD Exacerbation Presentation

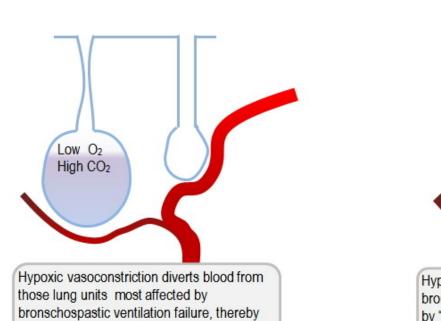
- Wheezing
- Tachypnea/bradypnea
- Cough
- Hypoxia

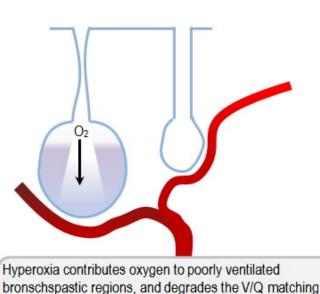


Treatment - Respiratory support

- Oxygen
 - SpO2 goal >94%
- Poor VENTILATION is the problem
 - 2nd is diaphragmatic fatigue
- If alert with respiratory drive:
 - CPAP
 - BiPAP if within scope
- Poor respiratory drive (RR <10)
 - BVM w/ PEEP valve

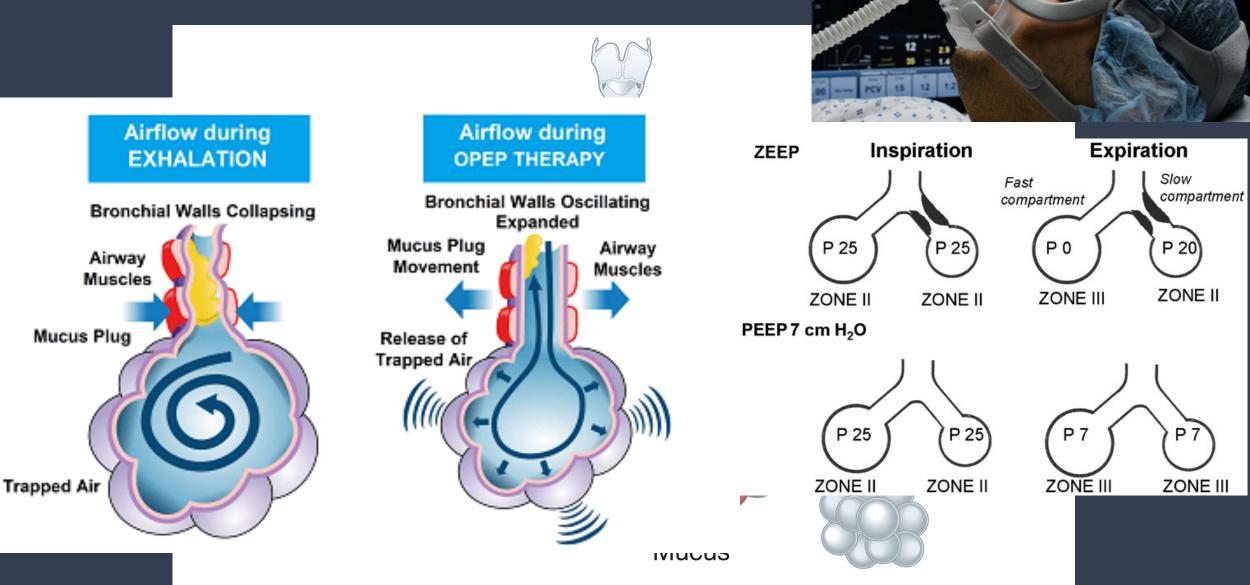
Treatment approach – Target the problem


maintaing a good V/Q match


Airway

- Suctioning (as needed)
- Adjuncts
 - NPA/OPA

Breathing


- Monitor SpO2/EtCO2
- Consider CPAP
- Consider BVM
- Oxygenation?
 - Target ~94% SpO2 (normoxia)*
 - Hyperoxia can worsen respiratory status!

by "stealing" blood from well ventilated regions

Respiratory Support - CPAP

CPAP - Checklist

Contraindications	Can go if all "No"
Respiratory Arrest	
Hypotension	
Head or facial trauma	
Suspected pneumothorax or penetrating chest trauma	
Unable to protect airway (active vomiting etc.)	
Severe Gastric distention	

Indications

✓ Persistent Hypoxia despite NRB
 ✓ Ventilatory failure
 ✓ Respiratory Drive

CPAP – Considerations

<u>Remove if:</u>

- 1) Patient vomits
- 2) Respiratory arrest
- 3) Cardiac arrest

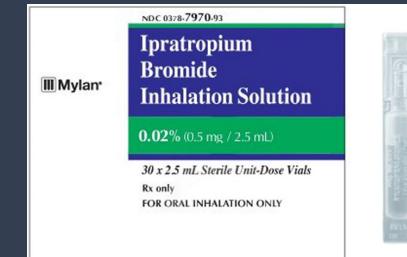
Beards and Seals

Treatment approach – Pharmacology

Ipratropium = Anticholinergic

- Primarily muscarinic type receptors
- Smooth muscle relaxation

Albuterol = Beta-agonist


- Smooth muscle relaxation in airways
- Mild increase in HR

Treatment approach – Pharmacology

- Albuterol (All providers)
 - 5mg nebulized (can repeat)
- Ipratropium (All providers)
 - 0.5 mg nebulized
- Corticosteroids (EMT-I/AEMT)
 - Dexamethasone -> 0.6 mg/kg (max per protocol)
 - Methylprednisolone -> per protocol

Epinephrine – Respiratory Failure

Consider Use In Impending Respiratory Arrest

Treatment Approach – ALS

- Magnesium
- Epinephrine
 - IV/IO (infusion and push dose)
 - Nebulized?
- Mechanical Ventilation
- Intubation

Treatment Approach – ALS

• Epinephrine Infusion

- "Mini-bolus"
 - 2-10 mcg/min IV/IO, repeat every minute to sustain MAP >65 mmHg
- Drip
 - 2-10 mcg/min IV/IO titrated to MAP >65 mmHg in adults

• Nebulized Epinephrine?

- No true indication unless stridor present
- Not commonly used for COPD exacerbations

Epinephrine Mini-Bolus

- 1mL of 1mg/1mL concentration (anaphylaxis concentration)
- Inject into 100mL NS bag
- New concentration ~ 1mg/100mL = 1000mcg/100mL = 10 mcg/mL
- OR (Push Dose)
- Waste 9mL of code dose epi (1mg/10mL), leaving 1mL of epi (0.1mg of 100 mcg)
- Draw 9mL of normal saline into syringe
 - = 10mcg/mL

Treatment Approach – ALS

Magnesium infusion

- Mixed evidence for benefit in COPD
- Use if persistent wheezing despite first line treatments
- 2g IV/IO infused over 10 minutes
 - Use a pump if available
 - Otherwise titrate by drip rate per standard stocking on your ambulance

Mechanical Ventilation

- Assisted ventilation of apneic or minimally responsive patients in severe distress/failure
- Consider using mechanical ventilation on patients with poor respiratory effort who are awake with a CPAP mask

What is mechanical ventilation?

- Controlled POSITIVE PRESSURE ventilation
- Delivers baseline sustained pressure (PEEP) and positive inspiratory pressure (PIP) to a set pressure or volume
 - BiPAP = non-invasive mechanical ventilation with PEEP and PIP
- Can be used for respiratory distress or failure
 - The patient doesn't need to be apneic, nor do they need to be unconscious!
 - Can be attached to BVM, CPAP mask, LMA or Endotracheal tube
 - *must be able to ventilate for non-invasive ventilation

Mechanical Ventilation in COPD

- Often required for patients with severe diaphragmatic fatigue, respiratory failure
- Patients often require respiratory support to sustain ventilation and prevent CO2 retention
- Patients will require PEEP to maintain open airways as well as positive inspiratory pressure (PIP) to assist diaphragm with ventilation

Mechanical Ventilation – Starting parameters

- Recommended tidal volume = 6-8 cc/kg
- Peep = 5 to match resistance of ventilator and circuit
 - Can add more PEEP, but will only support oxygenation
 - Not recommended to go >8
- Positive inspiratory pressure (PIP)
 - Initial settings often 10 or 12
 - Will help with VENTILATION and removal of CO2
- Lower supportive respiratory rate (12-14)
 - Allows time for expiration (blowing off CO2)
 - Patient may "breath over" set rate
 - However if still breathing >30/min, increase respiratory support (PIP)

Mechanical Ventilation - Monitoring

- ALWAYS apply EtCO2 with mechanical ventilation
- In COPD a high CO2 is expected, titrate ventilation to mentation and effort
- Hemodynamics
 - Positive pressure ventilation increases pressure in the chest and can cause decrease venous return
 - Administer IV fluids if patient does not appear to be in heart failure (Blue Bloater) or if apparently dehydrated (often the case)
- Oxygenation
 - Target oxygenation is 88-92% in COPD
 - Excess oxygenation can increase pulmonary shunting and worsen hypoxemia

Intubation – Emergent

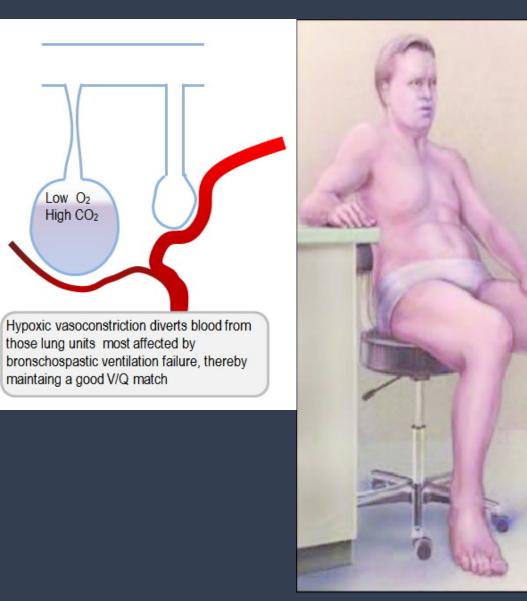
- Gurgling secretions
- Respiratory Arrest
- Cardiac Arrest (LMA)

Pulmonary Arterial Hypertension (PAH)

- Increased blood pressure in pulmonary vasculature
 - Primary/Genetic cardiac defects/shunts
 - Medications/Drugs sympathomimetics, chemotherapy etc.
 - Left heart failure
 - Chronic lung disease (Fibrosis, COPD, restrictive lung disease etc.)
 - Chronic hypoxemia (obesity hypoventilation, obstructive sleep apnea)
 - Portal-pulmonary hypertension (~3% of all portal HTN patients)
- Consequences effecting EMS care
 - Hemodynamic compromise (hypotension, heart failure etc.)
 - Chronic pulmonary vasodilator therapy

PAH – Hemodynamic effects

- Right-sided heart failure
 - Over-dilated RV from central congestion
- Any change in pre-load will drastically alter function
 - Overload (Cardiogenic shock, Bradycardia, fluid retention etc.)
 - Underload arrythmias (A-fib etc.), vasodilatory shock (neurogenic, anaphylactic, sepsis etc.)
- What does this mean to you?
 - Very volume dependent and sensitive
 - Fluid shifts (dehydration or retention) can worsen heart function quickly
 - Prone to hypotension but SENSITIVE TO FLUID INFUSION


PAH – Presentation

• History

- Weight gain/Peripheral edema
- Dyspnea on exertion
- Abdominal fullness, early satiety, RUQ pain
- Physical Exam
 - Systemic Congestion (LE Swelling, JVD, Ascites etc.)
- Shock Presentation
 - Cool, clammy extremities with poor cap refill
 - Reduced urine output
 - Delirium (agitation, anxiety common)

PAH – Chronic therapies you may run into

- Oxygen
 - Most have O2 requirement
- Diuretics
 - Volume overload common problem
- Lung Transplant
 - i.e. immunosuppressant medications
- Pulmonary vasodilators
 - Sildenafil/Viagara
 - Systemic Prostacyclins

Systemic Prostacyclins

- Epoprostenol/Teprostinil
 - Can be administered IV or SubQ
 - Patients will often have their own pump/PCA
- Used in end-stage disease or as a bridge to transplant
 - i.e. these patients are very fragile and sick!
- Overall short half-life
 - Dysfunction of pump is an emergency!

What can we do in the field?

- Airway considerations
 - Avoid intubation!
 - Maintain SpO2 >92%
- Breathing
 - Positive pressure ventilation (CPAP/BiPAP)
 - Keep pressures low, consult MCEP for advice
- Circulation
 - Avoid fluid boluses for target BP (norepinephrine better choice)
 - AVOID sublingual nitro administration for chest pain
 - Consider cardioversion for atrial fibrillation
 - Inotrope (lower dose epinephrine) for cardiac support
 - Epinephrine may be better first line for bradycardia with hypotension (contact MCEP)

References

- Althunayyan SM, Mubarak AM, Alotaibi RN, Alharthi MZ, Aljanoubi MA, Alshabanat S, Mobrad AM. Using gel for difficult mask ventilation on the bearded patients: a simulation-based study. Intern Emerg Med. 2021 Jun;16(4):1043-1049. doi: 10.1007/s11739-020-02547-1. Epub 2020 Nov 6. PMID: 33159283; PMCID: PMC7646717.
- <u>https://emcrit.org/ibcc/aecopd/</u>
- <u>https://emcrit.org/ibcc/pah/</u>
- https://emcrit.org/ibcc/rv/#top
- https://emsairway.com/2021/07/12/training-tips-for-cpap-and-bipap/#gref
- https://derangedphysiology.com/main/required-reading/respiratory-medicine-and-ventilation/Chapter%20611/ventilation-strategies-status-asthmaticus-0
- Johnson DB, Merrell BJ, Bounds CG. Albuterol. [Updated 2024 Jan 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482272/
- Patel P, Saab H, Aboeed A. Ipratropium. [Updated 2023 May 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK544261/