Whole Blood Resuscitation in Trauma

Jade Nunez, MD FACS Associate Professor of Surgery Associate Trauma Medical Director

OVERVIEW

- Introduction
- Historical context
- Current challenges
- Importance for critical care physicians

FROM BATTLEFIELDS TO CIVILIAN CARE

FIGURE 75.-Medical care on Omaha Beach, June 1944. Note the absence of a litter.

The National WWII Museum

TRANSITION TO INDIVIDUAL COMPONENTS

- Economics of blood banking
- Specific components for cytopenias
- HIV epidemic

- ABO-specific WB mandate
- No PLT-sparing LR filter
- Question of viable cold storage PLT

TRAUMA

- Leading cause of death < age 45
- 20-40% of deaths after admission involved massive hemorrhage
 - 70% in the first 6 hours after arrival
 - Potentially preventable
- Up to 25% of bleeding trauma patients are coagulopathic on arrival

Wilderness Medicine Blog

TRAUMA-INDUCED COAGULOPATHY

Chang, et al. DOI 10.1182/blood-2016-01-636423.

DAMAGE CONTROL RESUSCITATION

- Rapid hemorrhage control
- Early use of component therapy (CT) to replicate WB -1:1:1
- Minimize crystalloids
- US DOD made standard of care in 2004

JAMA. 2015;313(5):471-482. doi:10.1001/jama.2015.12

PROPRR TRIAL

- RCT of 680 patients comparing 1:1:1 to 1:1:2
- No mortality difference
- More 1:1:1 achieved hemostasis and fewer died due to bleeding by 24 hours

JAMA. 2015;313(5):471-482. doi:10.1001/jama.2015.12

RENEWAL OF WB INTEREST

Transfusion News

RENEWAL OF WB INTEREST

More feasible than CT in combat setting when demand > supply

Committee on Tactical Combat Casualty Care recommended WB as the optimal resuscitation product in 2014

Superior hemostatic profiles

No additional cold, acidic fluids

Hanna et al. J Trauma Acute Care Surg Volume 89, Number 2

RENEWAL OF WB INTEREST

- Lower volume Can be given warmed
- Lower risk of admin No need to be thawed or spun error
- Promotes balanced • 14-21 day shelf life at 1resuscitation 6 C

Hanna, et al. Current Anesthesiology Reports (2022) 12:234–239

Table 1	Whole blood	composition	compared t	to com	ponent	therapy
---------	-------------	-------------	------------	--------	--------	---------

Component therapy (675 mL)	Whole blo
1 unit of pRBC=335 mL with hematocrit of 55%	Hematocr
1 unit of PLTs = 50 mL with 88 K platelets	Platelet co
1 unit of FFP=275 mL with 80% coagulation activity	Plasma co
1 unit of cryoprecipitate = 15 mL with 150 mg of fibrinogen	Fibrinogen
Thus, 1 unit of pRBC+1 unit of PLTs+1 unit of FFP+1 unit of cryoprecipitate=675 mL with hematocrit coagulation activity of 65% compared with WB	of 29%, plat

pRBC packed red blood cells, PLTs platelets, FFP fresh frozen plasma, WB whole blood.

ood (500 mL)

rit of 38–50% ount of 150-400 K bagulation factors = 100%n = 1000 mgtelet count of 88 K and

LOW TITER TYPE O WHOLE BLOOD

- Due to risk of TRALL
- Low levels of anti-A and anti-B IgM
- Rh + for males
- Rh for females of child bearing age

Hanna, et al. Current Anesthesiology Reports (2022) 12:234–239

MILITARY OUTCOMES

- Spinella, et al.
 - Retrospective, 354 soldiers with WB vs CT
 - 95% vs 82% 30d survival (p=0.002)
 - MV regression OR 12.4 (1.8-80; p=0.01)

CIVILIAN OUTCOMES

- Cotton, et al. 2013
- RCT pilot; 107 patients
- No reduction in transfusion volumes

- Excluding TBI, WB reduced transfusion
 - pRBC 3 vs 6, p=0.02
 - Plasma 4 vs 6, p=0.02
 - Platelets 0 vs 3, p=0.09
 - Total 11 vs 16, p=0.02)

CIVILIAN OUTCOMES

- Hanna, et al. 2020
 - Retrospective, 8,494 TQIP patients
 - WB as an adjunct to CT improved outcomes
 - reduced 24-h mortality (OR 0.78 [0.59-0.89]; p = 0.006)
 - in-hospital mortality (OR, 0.88 [0.81–0.90]; p = 0.011)
 - major complications (OR, 0.92 [0.87–0.96]; p = 0.013)
 - LOS (9 vs 15d, p=0.013)

; p = 0.006) = 0.011) c = 0.013)

CIVILIAN OUTCOMFS

- Williams, et al.
- 350 patients, WB vs CT by air transport and FD
 - 53% reduction in post-ED transfusion $(OR \ 0.47, 0.23-0.94; p=0.047)$
 - 2x increased likelihood of survival (OR 2.19; 1.01-4.76; p=0.047)

COST (\$170K/YR)

CHALLENGES

SHIPPING & HANDLING

WASTE

FUTURE DIRECTIONS

 Childbearing age females

• Efficient use

MCTs

• Cardiac surgery, liver transplant and OB are following suit

Pediatrics

 Cold-stored platelets

